ABSTRACT

- State the criteria used to assume regulatory bioequivalence in the Abstract’s Methods.
- Provide actual data for the pharmacokinetic parameters evaluated (e.g., 90% CI for AUC, C_max).
- Begin the Abstract’s Conclusion(s) in the following manner: “This [single- or multiple-] dose study found that the test and reference products met the regulatory criteria for bioequivalence in these [fasting or fed] [healthy, male/female] [volunteers or patients with...].”

INTRODUCTION

- Indicate the rationale for the study (e.g., obtain marketing authorization in...).
- Clearly state the objective of the study.

MATERIALS AND METHODS

- Provide the rationale for conducting a single-dose or multiple-dose, or a fasting or fed, study.
- Multiple-dose studies are required if there is a difference in the rate, but not the extent, of absorption; if there is large intersubject variability in pharmacokinetic parameters; if the blood concentration resulting from a single dose is too low for accurate determination; or if the drug product is an extended-release dosage form.
- Food-effect studies are needed for immediate-release drugs for which the prescribing information contains statements about the effect of food or if the drug cannot be taken on an empty stomach. Food-effect studies are also needed for most orally administered modified-release drugs except those for which the prescribing information recommends taking the drug on an empty stomach or does not mention the effect of food.
Indicate the duration of sampling and the washout period as 3 and 5 times \(t_{1/2} \), respectively, of the drug or active metabolite.

Provide the rationale for selecting the parent or active metabolite for analysis.

State and reference the criteria used to assume bioequivalence.

Justify any deviation from the US Food and Drug Administration or the European Medicines Agency for conduct of bioequivalence studies (e.g., discussion with agency).

Provide a sample-size calculation to support the number of subjects included in the study.

Describe analytical methods in enough detail to allow duplication. The analytical method used must be validated and its selectivity, precision, accuracy, recovery, and limit of detection reported.

Consider correcting the pharmacokinetic parameters for mg/kg doses given.

Detail the methods used to monitor adverse events. Subjective and objective methods to determine tolerability are recommended.

Indicate the lot numbers and expiration date for all products.

Provide references for the statistical approach selected (e.g., average, population, or individual bioequivalence).

RESULTS

Provided actual data in text and tables, along with statistical analysis.

The primary end point analysis will be presented first.

Evaluate subject, period, sequence, and treatment effects. Intersubject, intrasubject, and/or total variability should be reported.

Report \(C_{\text{min}} \), \(C_{\text{av}} \), degree of fluctuations, and whether steady-state studies are employed.

Document any statistically significant differences (or lack thereof) between the test drug and the reference drug.

Report tolerability data in detail.

DISCUSSION

Discuss the limitations of the study (e.g., single dose, inclusion/exclusion criteria, food effect) and the limits of generalizability (e.g., cannot predict performance in patients in clinical practice).

Indicate whether the product is currently considered bioequivalent by a regulatory agency.

CONCLUSION(S)

Format conclusion(s) in the same manner as requested in the Abstract: “This [single- or multiple-] dose study found that the test and reference products met the regulatory criteria for bioequivalence in these [fasting or fed] [healthy, male/female] [volunteers or patients with...].”