Solar energy conversion has now become a viable method to satisfy a substantial amount of our energy needs while reducing carbon dioxide pollution, creating jobs and decreasing market instabilities tied to the geopolitics of fossil fuels. There is a growing awareness that fossil fuels are undesirable and that their supplies are rapidly diminishing or are environmentally or economically unsustainable. Exponential growth of installed capacity for renewable energy power plants using sources like the sun and wind is self-sustaining due to ever growing economies of scale and supply chains, and a more complete understanding of the basic properties required for both economic and efficient solar energy converters [1–3]. As such, there is an increasing number of solar-related submissions to this journal, and to related journals.

The purpose of this editorial is to outline the requirements for submissions made to Solar Energy Materials and Solar Cells, as well as to clarify research directions and topics that need special attention. Papers that strongly consider these aspects are given high priority and have a greater chance of progressing rapidly and successfully through the peer-review process.

This journal has a wide scope and breadth and the name, Solar Energy Materials and Solar Cells, implies an emphasis on solar cells. It should, however, be emphasized that the journal generally considers work on all solar energy materials, and devices made from these materials, as long as the materials science aspects are emphasized. It also encourages submissions on materials for energy conservation (i.e., electrochromics, photochromics and thermochromics), solar thermal processes and sunlight-driven chemical reactions, such as those for solar fuels, water sterilization and detoxification for a cleaner environment.

Authors should submit manuscripts via the on-line Elsevier Editorial System (EES). They should select the editor whose topic area overlaps with the main focus of the manuscript. Each editor will handle manuscripts within their topical area. When submitting manuscripts via the EES, a summarized list of topics for each editor is available, but authors can refer to this editorial for guidance. The journal encourages all innovative approaches in material science and engineering as it applies to the field of Solar Energy, especially those that use analytical tools and characterization techniques applied towards an understanding of chemical, physical and interface properties. Papers on new materials for both active and passive layers are encouraged. Priority will be given to reports on detailed material science studies that also demonstrate practical applications, with emphasis on the electronic, optical and thermal properties of solar energy converters and solar control materials. Manuscripts will be strongly considered for publication if they report on materials for solar energy as related to the following: fundamental experimental research on new materials or device structures; process parameters that contribute to material quality and device performance; effective encapsulation and packaging schemes for devices; field tests comparing one material to another; production methods and high volume manufacturing; stability data; energy and life cycle considerations (including materials availability and abundance); understanding degradation or stability and new strategies for significantly improving performance beyond that of the state-of-the-art devices.

Below is an overview of all current editors and the fields they cover.

Dr. Frederik C. Krebs covers organic photovoltaic (OPV), polymer solar cells, hybrid inorganic–organic devices, dye-sensitized cells (DSSC) and metal–organic compounds (e.g., perovskite metal–organic solar cells). Such manuscripts are evaluated on the basis of whether they contribute to an improved understanding of the field in terms of physics, chemistry and engineering. Articles reporting novel organic materials with a low performance are considered provided that they give insight into other important areas, e.g., stability or manufacturing. Priority will be given to work that presents stability data, an understanding of degradation mechanisms, or energy conversion efficiencies greater than 5%. The active area for these reports can be below 1 cm², but reports where authors also include large area data (≥1 cm²) will be given preference. It is mandatory that authors claiming high solar conversion efficiency (≥5%) should include data on devices with an active area of greater than 1 cm².

Dr. Krebs also covers the topic of polymer materials for encapsulation and packaging of all types of solar conversion devices, including ethylene-vinyl acetate (EVA), polyvinyl butyral (PVB), silicones and other transparent polymers. Photocatalysis reports are also generally considered. Manuscripts on photo-degradation of organic substances over a photocatalytic surface are only considered if they provide an in depth understanding of the mechanisms or demonstrate usefulness in a solar-related application. Reports on catalysts for solar fuels and efficient water splitting or photochemical conversion over catalytic surfaces are encouraged.

Dr. Aline Rougier covers basic optical and electrical properties of solar energy materials, as well as Transparent Conductive Oxides (TCOs) [4–8]. Dr. Rougier also covers solar control materials for energy efficiency, including chromogenic materials and devices such as electrochromics, thermochromics and photochromics. Dr. Rougier handles manuscripts focusing on the basic and fundamental properties related to solar conversion and solar control devices. That said, these manuscripts must present either some sort of substantial theoretical assessment or experimental data that demonstrates that
the specific material under study can indeed be useful in a thermal or photovoltaic solar converter, or in a solar control device.

Editor-in-Chief, Dr. Carl M. Lampert, handles manuscripts involving chromogenic materials as well, but also those that utilize selective absorbers for thermal applications, building-integrated PV (BIPV) and materials for “green buildings.” Dr. Lampert also covers materials for solar thermal collectors and low-emittance surfaces, phase-change materials for thermal storage, and materials and devices for radiative cooling, daylighting, light piping and spectral modification. Dr. Lampert’s topics include glazing materials, and related surface treatments and functional coatings. Also, Dr. Lampert covers manufacturing and industry developments for commercial processes, especially those that use vacuum processes. He is also the editor handling most manuscripts on advanced PV concepts, including those reporting on quantum dots, nanowires, intermediate bands and plasmonics. In short, Dr. Lampert covers chromogenic materials, novel PV concepts, BIPV and solar thermal materials. It is important to note that the point of contact for authors with questions regarding their manuscript is the handling editor who is processing the manuscript, rather than the Editor-in-Chief.

Dr. Ivan Gordon covers all manuscripts on wafer-based monocrystalline and multicrystalline silicon solar cells, and silicon-based thin film solar cells (crystalline silicon, amorphous silicon, microcrystalline silicon, micromorph tandems). To be eligible for publication, those manuscripts should contain relevant cell or module results that demonstrate the usefulness for photovoltaics of the materials and processes studied. For example, a manuscript describing a novel passivation layer should demonstrate this material in a working device and compare it to state-of-the-art passivation layers commonly used in such devices. Manuscripts reporting on analytical tools, such as impurity analysis and luminescence measurements for silicon PV R&D and manufacturing are encouraged for publication if they clearly demonstrate how the analytical technique can be used to improve solar cells. If the manuscript only shows general material characterization results obtained by the analytical tool (e.g., general semiconductor properties), it is not eligible for publication in Solar Energy Materials and Solar Cells. Similarly, papers showing only modeling of silicon-based devices are generally also not acceptable for publication in Solar Energy Materials and Solar Cells. Manuscripts on purification and processing methods for polysilicon can be considered on the condition that they include results for devices made with those materials. Reports on novel silicon-based materials for PV or novel processes to produce silicon-based solar cells can be published if the manuscript clearly shows the potential of the new material or process at device level. If demonstrated device efficiencies are too low compared to the state-of-the-art, such reports on novel materials or processes will be rejected.

Dr. Greg P. Smestad manages the peer review process for manuscripts on Concentrator Photovoltaic (CPV) cells and systems [9]. These employ III/V (e.g., AlGaAs, InGaAsP alloys) or silicon-based thin film solar cells (crystalline silicon, amorphous silicon, microcrystalline silicon, micromorph tandems). To be eligible for publication, those manuscripts should contain relevant cell or module results that demonstrate the usefulness for photovoltaics of the materials and processes studied. For example, a manuscript describing a novel passivation layer should demonstrate this material in a working device and compare it to state-of-the-art passivation layers commonly used in such devices. Manuscripts reporting on analytical tools, such as impurity analysis and luminescence measurements for silicon PV R&D and manufacturing are encouraged for publication if they clearly demonstrate how the analytical technique can be used to improve solar cells. If the manuscript only shows general material characterization results obtained by the analytical tool (e.g., general semiconductor properties), it is not eligible for publication in Solar Energy Materials and Solar Cells. Similarly, papers showing only modeling of silicon-based devices are generally also not acceptable for publication in Solar Energy Materials and Solar Cells. Manuscripts on purification and processing methods for polysilicon can be considered on the condition that they include results for devices made with those materials. Reports on novel silicon-based materials for PV or novel processes to produce silicon-based solar cells can be published if the manuscript clearly shows the potential of the new material or process at device level. If demonstrated device efficiencies are too low compared to the state-of-the-art, such reports on novel materials or processes will be rejected.

Dr. Xavier Mathew is the editor for all non-silicon thin film solar cells (e.g., CdTe and CulnGaSe2 or CIGS type solar cells and Cu2ZnSn(S/Se)4 or CZTS type solar cells). Papers on established or emerging inorganic thin film PV devices will be considered if they report on one or more of the following: carrier transport; strategies to overcome the efficiency-limiting barriers; processing steps that lead to better material quality; grain boundary control and overall device performance; processing steps in the device fabrication; low cost technologies and novel concepts in large area deposition of thin film materials. Papers reporting routine material processing, characterizations and low solar conversion efficiencies will no longer be strongly considered. However, if the scope of the paper is to demonstrate a new or low-cost approach, such papers will be considered even if efficiency is low. While reporting efficiencies comparable with the existing records, the measurements must be performed in a certified laboratory. Dr. Mathew will also cover new thin film solar cell materials and non-silicon tandem thin film PV devices.

Dr. A. Subrahmanyan handles manuscripts on thin film deposition, especially oxide-based materials and devices. He also handles chromogenics (including electrochromics and all charge intercalation mechanisms [4–8]), antireflection layers, and transparent conducting films such as ITO, tin, silver and copper oxides and charge transfer processes across oxide semiconductor–liquid interfaces. His specialties include Kelvin Probe for surface engineering and thin films of all kinds made by cylindrical and planar magnetron cathodes. For all of these topics, a connection in the manuscript should be made between the layers and materials and the resulting solar conversion devices. Manuscripts solely reporting on advancements in fundamental or theoretical aspects of materials utilized for solar energy are also be handled by Dr. Aline Rougier as described previously.

2. Common pitfalls and errors

Due to the large numbers of manuscripts the journal receives each day, the selection process must be very stringent. The journal’s editors must therefore make tough choices about the papers that are reviewed, processed and ultimately published. Consequently, many submitted manuscripts may be rejected.

Authors often fall victim to one or more of several common mistakes that can be avoided primarily by awareness of them. In some cases, the work reported in the paper is not fully developed and further research is needed before consideration for publication. In other instances, the manuscript does not significantly add to the existing knowledge of the field. Work that duplicates or only incrementally adds to existing knowledge is not accepted. A common error is that references are not up to date or the manuscript does not fully acknowledge closely related research published by others in the literature. Higher priority is given to submitted manuscripts that relate the material’s properties directly to devices made with the material described in the paper. Articles that are acceptable for entry into the Solar Energy Materials and Solar Cells peer-review process must be focused on material science, and connect material science to solar energy devices. Results and discussion sections must strongly relate to the Material Science aspects of solar energy conversion and/or photo-assisted chemical reactions (e.g., photo catalysis). Articles reporting on novel materials or materials grown by novel methods are acceptable only if they present proof (e.g., experimental data) that allows confirmation of whether the material can be considered a candidate for a solar control device or can be used in a solar converter (i.e., thermal or photovoltaic). Articles showing only general material characterization results should therefore be submitted elsewhere. Articles that are not suitable for publication
in Solar Energy Materials and Solar Cells include those that merely present device characterization, or those that contain fabrication or processing methods without presenting material science aspects. Manuscripts of a purely theoretical nature are generally not acceptable unless experimental data (either obtained by the authors or taken from literature) is presented that backs up the theoretical calculations presented.

3. Efficiency and standards

This part of the editorial describes general guidelines for reporting conversion efficiencies in the journal. The handling editor carefully administers our policies on efficiency reporting and standards when considering each submission. For example, the most relevant spectrum to utilize for solar-related measurements is ASTM G173-03 (The International standard is ISO 9845-1, 1992; ISO is the International Organization for Standardization). Tables are freely available for the Extraterrestrial Spectrum, Terrestrial Global 37° South Facing Tilt and Direct Normal plus Circumsolar values [12]. For concentrator cells and systems (CPV), the appropriate solar spectrum and conditions must also be considered and justified in the manuscript (see, for example, reference [13]). Several international laboratories have informally agreed upon concentrator-cell reference conditions. These conditions are 25 °C cell temperature, 1 sun=100 W m⁻² total irradiance, and the ASTM E891-87 direct-normal reference spectrum.

The journal would like to ensure that the quality of the reported results is as high as possible and that they conform to known and accepted standards. The primary standard is the Air Mass 1.5 Global (1000 W m⁻², AM1.5G) solar spectrum [12,14,15]. Although it is usually given as spectral irradiance (in units of W m⁻² nm⁻¹), it can easily be converted to spectral photon flux density (in units of photons m⁻² s⁻¹ nm⁻¹). Thus far, practical photovoltaic devices, when operated in an energy production mode, can produce only one electron in an external circuit for every incoming photon. The effects of quantum yields higher than 100%, as well as proposed advanced approaches, are excluded here and would require a more detailed description. This places an upper limit on the current that is expected or believable. Thus, the maximum short circuit current for a quantum solar converter is the integral of the AM1.5 photon flux curve up to the bandgap of the absorber materials employed in the device (see Fig. 1). This is even true of a solar converter with a concentrator if the reference area is taken as the entrance aperture of the system. It is also true for tandem PV solar cells or spectral splitting systems if the predicted current from each cell is added together.

Selected values for the maximum theoretical current are shown in Table 1, which is meant as a guide to check the observed current using the bandgap wavelength of the material. For organic materials, this wavelength can be calculated from the HOMO–LUMO transition, or, alternatively, the energy for exciton creation. It must be kept in mind that the values in the table represent an upper bound to the current densities that can be obtained, and the observed current densities should most often be much lower. This is because absorption of the incident light will never be complete over a given spectral range and because the conversion efficiency of photons into electrons in the external circuit is never 100%. All of these effects are measured when the external quantum efficiency, EQE, is determined. Other names for EQE include calibrated spectral response and Induced Photo-Current Efficiency (IPCE). When this measurement is available, the expected current is given by the integral of the product of the elemental charge, AM1.5 flux and the EQE. Whenever possible, this value should be reported together with the short circuit current density obtained from a current–voltage (I–V) measurement.

If observed values for the current density approach the values in the table, we urge authors to carefully check their instrumentation and their experiment, along with the optical properties of the absorber materials. All reported measurements of EQE and power conversion efficiencies should be traceable to international standards and any differences and deviations should be thoroughly described. If reported power conversion efficiencies exceed the existing records or are close to the record, the journal requires that the measurement be traceable to an ISO/IEC 17025 certified laboratory specializing in solar cell characterization. Such labs include, but are not limited to, the National Renewable Energy Laboratory (NREL), Japanese National Institute of Advanced Industrial Science and Technology (AIST), or Fraunhofer Institut für Solare Energieysysteme (Fraunhofer–ISE). In all cases, authors are advised to provide as much information as possible about the measurement and equipment, especially the light source(s). This includes the quality of the solar simulator according to standards such as ASTM E 927 or IEC 60904.

3.1. Possible sources of error

One common source of error in efficiency measurements stems from improper calibration of the solar simulator. We urge authors to consult the accepted standards defined for solar simulators

![Fig. 1. Photon flux from the sun at the earth's surface (1000 W m², AM1.5G) as a function of wavelength. The integral of the curve is shown on the right y-axis as a percentage of the total number of photons and as the obtainable short circuit current density for an absorber material with a step function absorbance at that wavelength.](image-url)

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Maximum harvested (%) from 280 nm to wavelength</th>
<th>Current density (mA cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>8.0 (9.4)</td>
<td>5.1 (6.5)</td>
</tr>
<tr>
<td>550</td>
<td>12.5 (14.0)</td>
<td>8.0 (9.7)</td>
</tr>
<tr>
<td>600</td>
<td>17.3 (19.0)</td>
<td>11.1 (13.2)</td>
</tr>
<tr>
<td>650</td>
<td>22.4 (24.3)</td>
<td>14.3 (16.8)</td>
</tr>
<tr>
<td>700</td>
<td>27.6 (29.6)</td>
<td>17.6 (20.4)</td>
</tr>
<tr>
<td>750</td>
<td>32.6 (34.7)</td>
<td>20.8 (23.9)</td>
</tr>
<tr>
<td>800</td>
<td>37.3 (39.5)</td>
<td>23.8 (27.2)</td>
</tr>
<tr>
<td>900</td>
<td>46.7 (48.8)</td>
<td>29.8 (33.7)</td>
</tr>
<tr>
<td>1000</td>
<td>53.0 (55.0)</td>
<td>33.9 (38.0)</td>
</tr>
<tr>
<td>1100</td>
<td>61.0 (62.9)</td>
<td>39.0 (43.4)</td>
</tr>
<tr>
<td>1250</td>
<td>68.7 (70.4)</td>
<td>43.9 (48.6)</td>
</tr>
<tr>
<td>1500</td>
<td>75.0 (76.5)</td>
<td>47.9 (52.8)</td>
</tr>
</tbody>
</table>
[16,17] and to employ one or more of the following:

1) a bolometric or thermopile measurement of the luminous intensity of the light source in conjunction with its spectral analysis,
2) a calibrated photodiode that employs an optical filter so that the spectral sensitivity of the diode plus filter combination approximates the PV device under test (further, the data must be corrected for mismatch [17,18]), and/or
3) a measurement in the sun, which can be used as a reliable source of light if the conditions are documented and reported (e.g. angle vs. zenith, air mass, temperature, and irradiance; see, for example, Ref. [19]).

Photodiodes are excellent for monitoring the flux from a solar simulator, but do not always accurately measure the energy that it emits. A calibrated photodiode can measure the flux up to a certain value of wavelength, but may not reveal information on energy contained in the spectrum at energies below the photodiode’s bandgap or at wavelengths longer than those able to pass its filter. Thus, it is possible to obtain the same value for the power density of the incoming light with two widely different lamp spectra and therefore to significantly overestimate the efficiency of a solar cell. It is therefore not enough to state that the lamp gives 1000 W m$^{-2}$ or that a calibrated photodiode was utilized.

Another common source of error is the failure to mask the cell such that only light incident on the reported active area reaches the absorber. This is especially important when the area is small (e.g. 0.25–1 cm$^{-2}$) or when there are edge effects. Measurements on very small cell areas often introduce large errors. It is recommended that efficiencies should be determined on devices with active areas of at least 0.4 cm$^{-2}$ and that the total and active areas be reported. Estimated collection areas and point contact (dot) cells should be avoided. Another source of error involves the device temperature. This should be reported and compared to measurement standards. The experimental error of measurements needs to be reported and the cells should be tested multiple times. All of the factors mentioned above, and many others, must be taken into consideration when reporting efficiency results. We therefore encourage authors to utilize published sources that describe the measurement of solar cells under internationally accepted conditions.

The solar conversion efficiency expected from Table 1 is given by the product of the current density, open circuit voltage (V$_{OC}$) and fill factor (FF) divided by the incoming light's power density. Thus, a silicon solar cell with a bandgap of 1.1 eV, a bandgap wavelength of 1100 nm and a FF and V$_{OC}$ of 0.7 and 0.7 V, respectively, would be limited to an AM1.5 power conversion efficiency below 22%. The thermodynamic limit for a single bandgap device under one sun at AM1.5 is approximately 33%. If authors propose that their solar conversion device operates beyond standard thermodynamic limits [1–3], rigorous proof must be provided with considerations of the aspects set forth in this editorial.

The journal would also like to comment on noteworthy efficiency levels. For both crystalline silicon PV technology and thin film PV technologies such as CdTe, CIGS, CZTS and related materials, amorphous and microcrystalline silicon, and organic materials, reported efficiencies should be close to the state-of-the-art in order to ensure that meaningful conclusions can be drawn from the findings in the manuscript. Manuscripts reporting on new materials or new deposition techniques leading to very low efficiencies are often not recommended for publication in Solar Energy Materials and Solar Cells. This is because such low efficiencies by themselves prevent a full judgment of the true potential of the new material or deposition technique in a solar application.

Another issue concerns the number of samples (e.g., solar cells) tested. Many manuscripts rely on just a few samples, or even a single sample, fabricated and tested. Then, the authors make broad conclusions that are not supported by statistics. This implies inductive reasoning, where the conclusion is reached by generalizing, or extrapolating from, initial information or a limited number of examples. This does not necessarily lead to valid conclusions and advancements in science. A related issue involves reproducibility and manuscripts based on a few experiments or, even worse, only one. Many samples or devices with superior properties and performance (i.e., champion cells) often seem to be based on a very limited understanding of what really happened to give better results. The editors and reviewers will filter out these cases and will give higher priority to those manuscripts that report both superior properties and a better understanding of the factors affecting performance. Care should be taken by authors to present results on statistics, stability and reproducibility.

4. Reporting on optical, conductive, thermal and ionic materials

Optical and thermal absorber materials must be characterized using integrated measurements of Solar Absorbance (A), Solar Transmittance (T) and Solar Reflectance (R) relative to an Air Mass (AM) such as 1.0 or AM1.5 [20–22]. In some cases such as vertical glazing AM 2.0 is more appropriate. Thermal Emittance must be integrated relative to the appropriate Black Body spectrum. Care must be taken when stating thermal emittance for operating temperatures considerably above room temperature.

Spatial measurements must state the physical nature of the measurements such as near-normal, angular or hemispherical (such as measured in an integrating sphere or heated cavity, for thermal measurements). This is especially true for non-specular and Lambertian surfaces, where an inappropriate measurement such as a near-normal measurement can introduce considerable inaccuracy for materials that are scattering in nature. For specialized measurements, such as angular measurements it is best to state the illumination cone angle and the resulting measurement cone angle of detection. Building, vehicle glazing and daylighting materials must be characterized according to the luminous or photopic spectra (daytime human eye response). All optical and thermal measurements must have the accuracy of the measurement given (±). All stated numbers and integrations must reflect the accuracy of the measurements. For example, a value stated as 10.0006 is not acceptable for an instrument with 5% accuracy.

For the case of chromogenic materials such as electrochromics, when coloration efficiency (CE$_{c}$) is stated, the measurement wavelength must also be given. Since CE$_{c}$ is a spectral dependent property, it is preferred to use a spectral or integrated measurement. Optical Density (OD) is acceptable if the appropriate spectral data is shown. For ionic and electrolytic materials energy conductivity, storage density and specific energy density should be given. For resistivity (Ω cm) and sheet resistance (Ω/square) measurements, film thickness should be stated. Furthermore, for conductive materials the ionic and electronic conductivities, including electron mobility and carrier concentration should be given.

Regarding thermal storage materials, especially phase change materials (PCM) all work must be referenced relative to the properties of existing “classic” storage materials, such as salt hydrates. For well-known systems, new PCMs must be compared to the best known properties in the literature. PCMs are rated in terms of their volumetric heat capacity (J/kg K) and specific heat capacity (J/K), melting point, thermal stability, thermal conductivity, congruent melting, volume change during phase change, cost, cycling life, super-cooling and hysteresis. Papers only on chemical synthesis processes without sufficient heat transfer characterization will not be accepted.
Heat transfer fluids are used in concentrating solar thermal power (CSP) plants. These fluids operate in the ±500–200 C range. New heat transfer fluids need to be compared to a benchmark heat transfer, such as Hitec or sodium. Characteristics of heat transfer fluids include thermal stability at operating temperature and lifetime. The thermal dependence on density, volumetric heat capacity (J/kg K), thermal conductivity, specific heat at constant pressure should be given. Also, evaluation of heat transfer fluids with temperatures using heat transfer numbers, Nusselt, Reynolds, Prandtl for turbulent flow should be given.

While reporting on new and emerging photo-catalytic materials, specific emphasis needs to be given for those that utilize visible wavelengths, including new approaches such as plasmonic assisted photocatalysts. When reporting the efficiency of the photocatalysts with respect to the degradation of conventional dyes, results should include the pH of the aqueous dye, the details of the catalytic surface and the details of incident wavelengths and photon flux.

5. Additional requirements

In addition, references in the journal Solar Energy Materials and Solar Cells should include the titles of the works. For details on these requirements, please refer to our on-line Guide for Authors, or the first issue of the current year. If the work has several English mistakes, these are the author’s responsibility to fix before submitting the manuscript. The article may be on the cutting edge of science, but it may not receive the recognition that it deserves unless the author’s definitions and concepts can be understood. With ever-increasing standards of excellence in publishing today, an article needs to be in its best possible form when it is submitted for publication—that includes spelling, grammar and style corrections as well as factual, accurate data. Authors can fine-tune their grammar by working with a native speaker, an expert in English or by using one of several language-polishing services that are available.

6. Managing your account on EES

There has been a continual improvement in the on-line editorial system (EES) and both reviewers and authors are encouraged to add“@elsevier.com” to their address books or safe senders list to ensure delivery of our e-mail to their inbox. If this is not done, some e-mails regarding journal business may end up in spam or junk folders. It is important to update your profile on EES (http://ees.elsevier.com/solmat) so that we can match your areas of interest to the processing of manuscripts for publication. After you have logged into EES, be sure to keep your profile up to date by following these steps:

1) Click the Change Details link to access your profile.
2) Update any of your contact information.
3) Be sure to select “Personal Classifications.” These will allow the editors to better identify your areas of expertise.

Please visit our suite of free online, interactive e-tutorials on how to use the EES, available at: http://www.elsevier.com/locate/eestutorials

7. Special issues

Special issues of Solar Energy Materials and Solar Cells must be pre-approved by the editor-in-chief and should include a collection of high quality papers from a unique or rapidly-advancing topic. In some cases, they can also be assembled from a recent symposium or conference. The journal would like to show support for topics of interest to our readers, but the relevance of special issues is decreasing due to the increased publication speed for all other types of contributions. If a special issue is approved, papers will follow the same peer review process as is applied to a regular paper. Manuscripts should have the length required to present the work completely, should meet all the requirements found in our Guide for Authors and should keep in mind all of the aspects of this editorial.

8. Peer review and Elsevier

Peer review is the process of subjecting an idea, work, or research plan to the scrutiny of others who are among a community of experts in the same, or similar field. The review process is an often-neglected part of the scientific method. Performing a meaningful and impartial review is a pillar of science and is aimed at achieving high quality R&D in a minimum amount of time. Elsevier and the journal Solar Energy Materials and Solar Cells appreciate these facts and value our reviewers’ time and efforts in reviewing papers. To assist in the reviewing process, Elsevier offers reviewers full access to Scopus for 30 days. Scopus is the world’s largest abstract and citation database of research information and quality internet sources. With Scopus, one can search for related articles, references and papers by the same author. Reviewers may also use Scopus for their own purposes at any time during the 30-day period. If they already use Scopus at their company or institute, having this 30-day full access means that they will also be able to access Scopus from home. Reviewers may rapidly and efficiently submit comments online via the EES. After login, they can find spaces for confidential comments to the editor, comments for the author and a simple report form. More details and resources on the peer review can be found at the dedicated web site (http://www.elsevier.com/reviewers/home). To register as a reviewer, visit the Solar Energy Materials and Solar Cells EES web site.

This editorial supersedes all prior editorials. Keeping all of the above information and aspects in mind will hopefully allow a smooth, rapid and efficient flow of manuscripts to better serve the Solar Energy community and continue to make our authors strong contributors to this exciting field.

References

[21] Aline Rougier
CNRS-ICMCB, 87 av. Du Dr. Schweitzer, 33608 Pessac-Cedex, France
E-mail address: rougier@icmcb-bordeaux.cnrs.fr

Greg P. Smestad
Sol Ideas Technology Development, P.O. Box 5729, San Jose’, CA 95150-5729, USA
E-mail address: inquiries@solideas.com

A. Subrahmanyam
Department of Physics, Indian Institute of Technology, Madras, Chennai 600036, India
E-mail address: manu@iitm.ac.in

Available online 26 November 2014