Please supply up to six keywords from this list and insert them below the abstract in the proof of your paper which will be sent to you shortly. Each keyword should be accompanied by the capital letter denoting the category into which it falls. The keyword list is also available on the journal homepage: http://www.elsevier.com/locate/jcrysgro.

A. PROCESSES INDEX

A1. Fundamental Aspects

- Adsorption
- Atomic force microscopy
- Biocrystallization
- Biomaterials
- Characterization
- Computer simulation
- Convection
- Crystal morphology
- Crystal structure
- Crystallites
- Defects
- Demixing
- Desorption
- Diffusion
- Directional solidification
- Doping
- Etching
- Eutectics
- Fluid flows
- Growth models
- Heat transfer
- High resolution X-ray diffraction
- Impurities
- Interfaces
- Light scattering tomography
- Line defects
- Low dimensional structures
- Magnetic fields
- Mass transfer
- Morphological stability
- Nanostructures
- Nucleation
- Optical microscopy
- Phase diagrams
- Phase equilibria
- Planar defects
- Point defects
- Purification
- Radiation
- Recrystallization
- Reflection high energy electron diffraction
- Roughening
- Segregation
- Solid solutions
- Solidification
- Solubility
- Solvents
- Stirring
- Stresses
- Substrates
- Supersaturated solutions
- Surfaces
- Surface structure
- Surface processes
- Surface structure
- Volume defects
- X-ray diffraction
- X-ray topography

A2. Bulk Crystal Growth

- Accelerated crucible rotation technique
- Bridgman technique
- Czochralski method
- Double crucible technique
- Edge defined film fed growth
- Electrochemical growth
- Floating zone technique
- Gradient freeze technique
- Growth from high temperature solutions
- Growth from melt
- Growth from solutions
- Growth from vapor

A3. Thin Film/Epitaxial Growth

- Atomic layer epitaxy
- Chemical beam epitaxy
- Chemical vapor deposition processes
- Chloride vapor phase epitaxy
- Graphoepitaxy
- Hot wall epitaxy
- Hydride vapor phase epitaxy
- Laser epitaxy
- Liquid phase epitaxy
- Low press. metalorganic vapor phase epitaxy
- Metalorganic chemical vapor deposition
- Metalorganic molecular beam epitaxy
- Metalorganic vapor phase epitaxy
- Migration enhanced epitaxy
- Molecular beam epitaxy
- Organometallic vapor phase epitaxy
- Pendeoepitaxy
- Physical vapor deposition processes
- Polyepitaxial growth
- Quantum wells
- Selective epitaxy
- Solid phase epitaxy
- Superlattices
- Topotaxy
- Vapor phase epitaxy

B. MATERIALS/DEVICES INDEX

B1. Materials by Type

- Acids
- Alloys
- Antimonides
- Aromatic compounds
- Arsenates
- Barium compounds
- Biological macromolecules
- Biological substances
- Bismuth compounds
- Borates
- Cadmium compounds
- Calcium compounds
- Cuprates
- Diamond
- Elemental solids
- Fullerences
- Gadolinium compounds
- Gallium compounds
- Gems
- Germanium silicon alloys
- Glasses
- Halides
- Inorganic compounds
- Lithium compounds
- Lysozyme
- Manganese
- Metals
- Minerals
- Nanomaterials
- Niobates

B2. Materials by Property Class

- Acousto-optic materials
- Dielectric materials
- Ferroelectric materials
- Magnetic materials
- Magneto-optic materials
- Nonlinear optic materials
- Oxide superconducting materials
- Phosphors
- Photorefractive materials
- Piezolectric materials
- Scintillator materials
- Semiconducting aluminum compounds
- Semiconducting cadmium compounds
- Semiconducting gallium arsenide
- Semiconducting gallium compounds
- Semiconducting germanium
- Semiconducting III-V materials
- Semiconducting II-VI materials
- Semiconducting indium compounds
- Semiconducting indium gallium arsenide
- Semiconducting indium phosphide
- Semiconducting indium phosphide
- Semiconducting lead compounds
- Semiconducting materials
- Semiconducting silicon compounds
- Semiconducting ternary compounds
- Superconducting materials

B3. Devices

- Bipolar transistors
- Field effect transistors
- Filters
- Harmonic generators
- Heterojunction semiconductor devices
- High electron mobility transistors
- Infrared devices
- Laser diodes
- Light emitting diodes
- MESFET devices
- Nonlinear optical
- Optical fiber devices
- Scintillators
- Solar cells
- Solid state lasers