Thank you for your interest in the “Science for Environmental Technology” of Chemosphere section. As the name implies -- this section deals with papers about technologies that manage and/or reduce environmental contaminants, including reuse and recycling processes. The technology must be beyond a basic laboratory study or have obvious implications for current or potential treatment or remediation technologies; thus papers focusing on, for example, fundamental (bio)adsorption studies or metal extraction by plant species should be submitted to a more suitable journal.

All papers should demonstrate a high level of novelty, originality and uniqueness. The Editor/Associate Editors will pre-screen all submitted manuscripts for novelty and appropriateness for the journal. The results of studies of a routine nature may not be submitted for review. For example, for any advanced oxidation process, the intermediates and/or the extent of mineralization of the targeted compound(s) and wastes must be quantified.

Two types of papers are published in this section: Research Paper and Tech Note. With the reviewers’ input, the Editor/Associate Editors will make decisions as to the type of paper eventually published.

Because Chemosphere does not have a copy editor to review the accepted papers before publication, a consistent format is difficult to maintain without the authors’ cooperation. The authors must follow the format specified in the “Guide for Authors”. Papers not following the required format will be returned to the author without review. To further assist the author’s preparation for submitting papers to this section, the following detailed information is provided.

Authorship and Affiliation:

Please refer to a recent issue in this section for the correct format. In particular, the family (last) names should be placed last.

Language:

Authors must provide a clear, concise and well-written paper with appropriate grammar and English.

Introduction:

Because of page constraints, the introduction should be clear and succinct and consist of only a few paragraphs directly leading to the rationale for the study. For example, there is no need to spend a half page emphasizing metal toxicity if metal removal is the topic nor a half page describing hole/electron pairs in semiconductor systems.

Materials/Methods:

The experimental and analytical methods should be concise (e.g., no need for detailed GC procedures unless they are particularly unique). Refer to previous publications that have used the methods when possible. On the other hand, QA/QC of the data must be clearly presented, particularly for low/trace concentrations or lower recovery efficiencies of some compounds.

Results/Discussion:

The text should avoid repeating data already shown in tables and figures and should only cover their significance. Errors associated with determined/calculated
values should be presented and an appropriate number of significant figures should be used. If there is a separate “Discussion” section, it should not present new results or repeat material from the “Results” section.

Well-known equations such as 1st-order kinetics, Langmuir isotherm, as well as contaminant removal efficiency \([\frac{(C_0-C)}{C_0} \times 100\%]\) should not be included. In general, plots used in determining constants should be eliminated, e.g., the yield coefficient in biological studies, activation energy in kinetic studies and isotherm constants in adsorption studies. Also, linearization of non-linear data should be avoided as it may introduce the so-called ratio correlation (i.e., the variable is present in both x- and y-axis as in the case of \(C/q_e\) versus \(C\) in the adsorption isotherm linearization).

When \(C/C_0\) used in figures, the \(C_0\) concentration must be specified.

Conclusions:
There is no need for a “Conclusion” section if redundant material is presented.

Acronyms:
Define acronyms when they first appear both in the abstract and in the text. Once they have been defined, please directly use them without spelling out again or redefining them. There is no need to define any acronyms when they will not reappear in the text. Also, simple elements/compounds need not be defined.

Italicize species names. Spell out the Genus name first and thereafter only use the initial.

Please refer to “Guide for Authors” for some common abbreviations (acronyms) that need not be defined, e.g., COD, HPLC, etc.

Syntax:
Provide a blank space before the unit. With some notations, however, no space is required, e.g., 80%, C/N ratio, 2:3 (v:v), an angle of 20°22′8″, etc. Ensure that adequate spaces are in between words, e.g., Figure 1 (not Figure1), pH = 4.5 (not pH=4.5), \(S_1 > S_2\) (not \(S_1 > S_2\)), etc.

Use adequate subscripts and superscripts and correct Greek symbols (e.g., \(\mu\) and \(\text{not } \mu\)) in the text as well as in Figures/Tables. Use periods (not commas) for decimal points.

Units:
To avoid confusion between the letter l and number 1, use L for liter, e.g., 5 mg L⁻¹ (no need for 5 mg dm⁻³). The conventional term M should be used for mol dm⁻³ or mol L⁻¹. Use y for years, wk for weeks, d for days, h for hours and s for seconds, mol for mole, t for metric tons, and ha for hectare. Use abbreviations for units, e.g., W (not watt), g for gram. Take advantage of prefixes, k, m, or \(\mu\); e.g., 1 mM (not \(10^{-3}\) M), 20 km (not 20,000 m). Use lowercase k for rate constants and for prefix k, e.g., kg (not Kg) and uppercase K for equilibrium constants. Unless otherwise noted, the first order rate constant is always based on the natural log.
Use SI units including (k)Pa (not bar, Torr or atm) for pressure and J (not cal) for energy. For isotopes, place the atomic weight on the left side, e.g., ^{14}C, ^{36}S, etc. Italicize g for centrifugal force, or 1000 g.

Citation: The referenced citations should be relevant and representative for the authors’ discussion. Unless absolutely necessary, please cite only archival English language articles. For the same authors on multiple citations, please use the format, Smith et al., 2004, 2005. If only the first author is the same, then use Smith et al., 2004; Smith et al., 2005. Citations should be listed in chronological order; use semicolons to separate citations; properly use et al.; all cited references must be listed.

Some authors cite Standard Methods (APHA), yet, there are several methods for the same parameter; please be specific.

References: Spell out all authors’ names. For the subtitle, capitalize the first letter, e.g., Environmental fate of EDCs: A review.

Use the correct journal abbreviations by referring to the Caltech web site shown in the “Guide for Authors”. No space should be included between the initials.

Provide issue numbers only for those journals that start with a new page 1 for all issues, e.g., Water Sci. Technol. 39(7), 5-11; J. Am. Water Works Ass. 96(8), 112-124.

Numbers/Significant Figures: The reported numbers do not just reflect the method detection limit of parameters; rather, the numbers also represent the errors in sampling, extraction, preparation, calculation, etc. Thus, removal efficiency should not carry any decimal points except for incineration and disinfection in which the log cycle or magnitude of order reduction should be used.

Please use scientific notation, e.g., 2.5×10^{-4} h$^{-1}$ (not 0.00025 h$^{-1}$). Also, pH values cannot be averaged.

Format: Use abbreviations Eq., Fig. in the text. Spell out only when they begin the sentence. Use the format Figure 1a (lowercase a).

Figures: To save valuable journal pages, try to combine plots close together by deleting the common axis (piggyback) and treat them as Fig. 1a and 1b, etc.

Symbols: Symbols need not be placed in an appendix.