Table of Contents

1. Structure and Active Domains of Heparin
 Benito Casu

 I. Introduction
 II. Heparin Components
 III. Molecular Conformation of Heparin Residues and Sequences
 IV. Heparin Domains Involved in Biological Interactions
 V. Molecular Conformation of Active Domains
 VI. Conclusions

2. Structure and Function of Cell Associated and Pericellular Heparan Sulfate Proteoglycans
 Sandra G. Velleman and Caini Liu

 I. Introduction
 II. Heparan Sulfate Synthesis
 III. Molecular Structure of Heparan Sulfate and Binding Ligands
 IV. Types of Heparan Sulfate Proteoglycans
 V. Syndicans
 VI. Role of Syndican in Development
 VII. Glypicans
 VIII. Roles of Glypican in Tissue Development
 IX. Betaglycan and CD44
 X. Pericellular Heparan Sulfate Proteoglycans
 XI. Role in Disease Pathogenesis
 XII. Summary

3. Methods for Structural Analysis of Heparin and Heparan Sulfate
 Ishan Capila, Nur Sibel Gunay, Zachary Shriver, and Ganesh Venkataraman

 I. Introduction
 II. Structure of Heparin and Heparan Sulfate
 III. Separation-Based Analysis of Heparin and Heparan Sulfate
 IV. Mass Spectrometric Analysis of Heparin and Heparan Sulfate
 V. Nuclear Magnetic Resonance Analysis of Heparin and Heparan Sulfate
 VI. New Methodologies for Structural Analysis of Heparin and Heparan Sulfate
 VII. Summary and Conclusion

4. Synthetic Approach to Define Structure-Activity Relationship of Heparin and Heparan Sulfate
 Christian Noti and Peter H. Seeberger

 I. Introduction
 II. Biosynthesis
 III. Structure of Heparin/Heparan Sulfate
IV. Chemical Synthesis of Defined Heparin Oligosaccharides
V. Summary and Outlook

5. Biochemical and Pharmacological Rationale for Synthetic Heparin Polysaccharides
Jeanine M. Walenga, Walter P. Jeske, and Jawed Fareed

I. Introduction
II. Biological Activities and Mechanisms of Action of Heparin
III. Fractionation and Fragmentation of Heparin
IV. Elucidation of the Mechanism Heparin Sequence for Binding to AT
V. Synthesis of the Pentasaccharide Representing the Critical Binding Site of Heparin to AT
VI. Pre-Clinical Pharmacology of Fondaparinux
VII. Clinical Trials of Fondaparinux
VIII. Derivatives of Pentasaccharide
IX. Summary

6. Separation and Sequencing of Heparin and Heparan Sulfate Saccharides
Mark A. Skidmore and Jeremy E. Turnbull

I. Introduction
II. Separation of Heparin and Heparan Sulfate Oligosaccharides
III. Heparin and Heparan Sulfate Sequencing
IV. Discussion

7. Biosynthesis of Heparin and Heparan Sulfate
Shuji Mizumoto, Hiroshi Kitagawa, and Kazuyuki Sugahara

I. Introduction
II. Biosynthetic Enzymes and Transporters of Uridine Diphosphate Sugars and 3’-Phosphoadenosine 5’-Phosphosulfate
III. Biosynthesis of Heparin and Heparan Sulfate Backbones
IV. Modification of the Sugar Backbones of Heparin and Heparan Sulfate
V. Conclusion

8. Remodeling of Heparan Sulfate by Extracellular Endosulfatases
Xinbin Ai, Marion Kusche-Gullberg, Ulf Lindahl, and Charles Emerson, Jr.

I. Introduction
II. Identification of Sulf Enzymes
III. Expression and Enzymatic Activity of Sulf Enzymes
IV. Signaling Regulatory Functions of Extracellular Sulfatases
V. Sulf Function in Tumor and Angiogenesis
VI. Conclusions

9. Heparan Sulfate Degradation by Heparanases
Karen J. Bame

I. Heparanase Proteins
II. Synthesis of Heparanase 1
III. Heparanase 1 Catalytic Activity
IV. Biological Functions of Heparanase 1

10. Lysosomal Degradation of Heparin and Heparan Sulfate
Peter J. Meikle, Maria Fuller, and John J. Hopwood

I. Introduction
II. Transport of Heparin and Heparan Sulfate to the Lysosome
III. Endo-Degradation of Heparin and Heparan Sulfate
IV. Exo-Degradation of Heparin and Heparan Sulfate
V. Transport of Degradation Products out of the Lysosome
VI. Diagnostic and Clinical Aspects of the Mucopolysaccharides
VII. Summary and Future Challenges in the Field

11. Heparin Regulation of the Complement System
Haining Yu, Eva M. Munoz, R. Erik Edens, Robert J. Linhardt

I. Introduction
II. Background and History
III. Heparin Regulation of the Complement System
IV. The Effects of Heparin on the Alternative Pathway
V. Conclusions

12. Surface-Based Studies of Heparin/Heparan Sulfate-Protein Interactions: Considerations for Surface Immobilisation of HS/Heparin Saccharides and Monitoring their Interactions with Binding Proteins
Tim Rudd, Mark A. Skidmore and Edwin A. Yates

I. Introduction
II. Attachment
III. Methods of Attachment to Surface
IV. Detection of Binding Partners

13. Heparin Activation of Serpins
James A. Huntington

I. Introduction
II. General Features of Heparin Binding Serpins
III. Antithrombin
IV. Heparin Cofactor II
V. The Others
VI. Conclusions

14. Role of Heparin in Fibroblast Signalling
Nicholas J. Harmer

I. Introduction and Perspective
II. Fibroblast Growth Factors
III. FGF receptors
IV. Interactions of the FGFs and FGFRs with Heparin
V. Structural Studies of FGF, FGFR and Heparin Complexes
VI. Conclusions and Future Perspectives

15. Role of Anticoagulant Heparan Sulfate in Mammalian Reproduction
Ariane I. de Agostini, Marc Princivalle, Ji-Cui Dong

I. Introduction
II. Anticoagulant Heparan Sulfate Proteoglycans
III. Anticoagulant Heparan Sulfate Proteoglycans in the Reproductive Tract
IV. Reproduction in Mice Deficient Anticoagulant Heparan Sulfate Proteoglycans
V. Perspectives

16. Glycol-Splitting as a Device for Modulating Inhibition of Growth Factors and Heparanase by Heparin and Heparin Derivatives
Annamaria Naggi

I. Introduction
II. Glycosyl-Split Heparins
III. Protein-Binding and Associated Biological Properties of Glycol-Split Heparins
IV. Conformational Implications of Glycosyl-Splitting
V. Conclusions

17. Antithrombin Activation and Designing Novel Heparin Mimics
Umesh R. Desai

I. Introduction
II. Antithrombin Inhibition of Procoagulant Proteinases
III. Structure of Heparin and Heparin Pentasaccharide
IV. Mechanism of Heparin Activation of Antithrombin
V. The Heparin Binding Site in Antithrombin
VI. The Heparin Binding Site in Factor Xa and Thrombin
VII. Thermodynamics and Kinetics of Heparin Binding to Antithrombin
VIII. Rationale for Designing Mimics of Heparin
IX. Heparin Mimics
X. Conclusions

18. Influence of Heparin Chemical Modifications on Its Antiproliferative Properties
Hari G. Garg, Robert J. Linhardt and Charles A. Hales

I. Introduction
II. Background and Significance of Chemical Modification of Heparin
III. Mechanisms Contributing to Heparin Inhibition of Smooth Muscle Cell Growth
IV. Importance of 3-O-Sulfate on the Internal Glucosamine Residue of Pentasaccharide for Antiproliferative Activity
V. Minimal Heparin Oligosaccharide Size Necessary for Antiproliferative Activity
VI. Effect of Chemical Modification of Heparin on Its Antiproliferative Activity
VII. Effect of the Type of Serum on Antiproliferative Activity

19. Mechanisms of Cell Growth Regulation by Heparin and Heparan Sulfate
Mathew A. Nugent, Kimberly Forsten-Williams, Morris J. Karnovsky and Elazer R. Edelman

I. Introduction
II. Modulation of Growth Factor Action
III. Direct Regulation of Cell Growth
IV. Growth Control in Disease
V. Conclusions

20. Heparin and Low Molecular Weight Heparin in Thrombosis and Inflammation: Emerging Link
Shaker A. Mousa

I. Introduction
II. Emerging Links between Thrombosis and Inflammation: Potential Role of Heparin
III. Heparin versus Low Molecular Weight Heparin
IV. Heparin as an Anti-inflammatory Molecule: Potential Mechanisms
V. Conclusions

21. Basic and Clinical Differences of Heparin and Low Molecular Weight Heparin Treatment
Debra Hoppenstead, Omar Iqbal and Jawed Fareed

I. Introduction
II. Unfractionated Heparin and Newer Anticoagulant and Antithrombotic Drugs
III. Low Molecular Weight Heparins and Their Impact on the Management of Thrombotic and Vascular Disorders
IV. Monitoring and Therapeutic Dosages
V. Clinical Trials with Low Molecular Weight Heparins
VI. Generic Low Molecular Weight Heparins
VII. American College of Chest Physicians Consensus Recommendations
VIII. Summary

22. Perlecan: An Extracellular Matrix Heparan Sulfate Proteoglycan that Regulates Key Events in Vascular Development and Disease
Michael G. Kinsella and Thomas N. Wight

I. Introduction
II. Perlecan-the Gene, the Protein Core, and the Glycosaminoglycans
III. Perlecan a Key Extracellular Matrix Component in Basement Membranes and in the Development of the Vascular System
IV. Phenotypic Regulation of Vascular Cells by Perlecan
V. Perlecan in Intimal Hyperplasia
VI. Perlecan in Atherosclerosis
VII. Perlecan and Angiogenesis
VIII. Conclusion

23. Heparin and Low Molecular Weight Heparins in Clinical Cardiology
Mehmet E. Korkmaz

I. Introduction
II. Overview of Pharmacology
III. Clinical Experiences
IV. Conclusions

24. Heparin-Induced Thrombocytopenia
Theodore E. Warkentin and William E. Dager

I. Introduction
II. Pathogenesis
III. Clinical Picture
IV. Laboratory Testing for Heparin Induced Thrombocytopenia Antibodies
V. Treatment

25. Role of Heparan Sulfate in Cancer
Dongfang Liu and Ram Sasisekharan

I. Introduction
II. Structure Features of Glycosaminoglycans
III. Biosynthesis and Degradation of Heparan Sulfate Glycosaminoglycans
IV. Biological Functions of Heparan Sulfate Glycosaminoglycans
V. Heparan Sulfate Glycosaminoglycans in Cancer

26. Use of Heparin Preparations in Older Patients
Antonella Tufano and Matteo Nicola Dario Di Minno

I. Introduction
II. Aging and the Haemostatic System
III. Unfractionated Heparin, Low Molecular Weight Heparins, and Fondaparinux; Pharmacological Properties
IV. Unfractionated Heparin, Low Molecular Weight Heparins, and Fondaparinux; Clinical Use in Elderly
V. Heparin and Low Molecular Weight Heparins: Risk of Bleeding in the Elderly
VI. Conclusions and Perspectives

27. Advances in Low Molecular Weight Heparin Use in Pregnancy
Andrew J. Thomson and Ian A. Greer

I. Introduction
II. Pharmacology and Pharmacokinetics of Low Molecular Weight Heparin in Pregnancy

III. Indications for the Use of Low Molecular Weight Heparin in Pregnancy

IV. Safety of Low Molecular Weight Heparin in Pregnancy

V. Conclusions