## CONTENTS

**Preface**  
v

**1. Introduction**  
1. Overview of the Corresponding-States Principle  
   1.1.1 The Corresponding-States Theory of Monatomic Molecules  
   1.1.2 The Corresponding-States Theory of Weakly Nonspherical Molecules  
   1.1.3 The Corresponding-States Theory of Highly Nonspherical Molecules  
1.2 Properties of Substances  
   1.2.1 Importance of Properties of Substances  
   1.2.2 Necessity of the Prediction of Properties  
1.3 Organization of the Book  

**The Corresponding-States Principle**  

**2. The Corresponding-States Principle from the Continuity of Vapor and Liquid States**  
2.1 The Continuity of Vapor and Liquid States  
2.2 The Van der Waals Equation of State  
2.3 Corresponding States of the Van der Waals Equation of State  
2.4 Universal Form of the Corresponding-States Principle  

**3. Theoretical Basis of the Corresponding-States Principle**  
3.1 Two-Parameter Corresponding-States Theory of Spherical Molecules  
   3.1.1 Introduction  
   3.1.2 Assumptions of the Two-Parameter Corresponding-States Theory  
   3.1.3 Derivation of the Two-Parameter Corresponding-States Theory  
   3.1.4 Two-Parameter Corresponding-States Theory and Properties  
3.2 Corresponding-States Theory of Asymmetric Molecules  
   3.2.1 Derivation of Corresponding States of Asymmetric Molecules  
   3.2.2 Quantum Effects  

**4. The Corresponding-States Parameters**  
4.1 Critical Parameters  
4.2 Acentric Factor  
4.3 Aspherical Factor  
4.4 Properties from Corresponding-States Principle  
   4.4.1 Second and Third Virial Coefficients  
   4.4.2 Compressibility Factor  
   4.4.3 Enthalpy Departure  
   4.4.4 Fugacity  
   4.4.5 Entropy Departure  
   4.4.6 Vapor Pressure  
   4.4.7 Density  
   4.4.8 Heat Capacity  

**References**
The Corresponding-States Practice

5. Thermodynamic Properties

5.1 Thermodynamic Relations

5.1.1 Basic Thermodynamic Functions
5.1.2 Overview of Equations of State

5.2 Virial Equations of State

5.2.1 Introduction
5.2.2 Virial Coefficients of Lennard-Jones Molecules
5.2.3 Virial Coefficients of Real Molecules
5.2.4 Departure Functions of the Virial Equation of State

5.3 Crossover Equation of State

5.3.1 Crossover Equation of State
5.3.2 Corresponding States of the Crossover Equation of State

5.4 Cubic Equations of State

5.4.1 Generalized Cubic Equations of State
5.4.2 Corresponding States of the Patel-Teja Equation of State
5.4.3 Departure Functions of the Generalized Cubic Equation of State

5.5 Hard-Sphere Equation of State

5.5.1 Basic Theory
5.5.2 Hard Sphere Equation of State
5.5.3 Corresponding States of the CS-PT Equation of State

5.6 Martin-Hou Equation of State

5.6.1 Thermodynamic Behavior of the Martin-Hou Equation
5.6.2 Corresponding States of the Martin-Hou Equation

5.7 Liquid Equation of State

5.7.1 Introduction
5.7.2 Saturated Liquid Density from Corresponding States
5.7.3 Comparison with Experimental Data

5.8 Corresponding-States Thermodynamic Properties and Calculated Deviations

5.8.1 Corresponding-States Thermodynamic Properties
5.8.2 Comparisons and Results

References

6. Vapor Pressures

6.1 Introduction
6.2 Phase Transition Theory
6.3 Vapor-Pressure Equation

6.3.1 Overview of Vapor-Pressure Equations
6.3.2 Calculation of Vapor Pressure
6.3.3 Prediction and Extrapolation from Vapor-Pressure Equations

6.4 Corresponding-States Vapor Pressure

6.4.1 Vapor Pressure from the Extended Corresponding-States Theory
6.4.2 Comparison of Experimental Data and Existing Methods

References

7. Transport Properties

7.1 Introduction
7.2 Theory of Gas Transport Properties
7.2.1 Corresponding-States of Zero-Density Gas Viscosity 181
7.2.2 Corresponding-States of Zero-Density Gas Thermal Conductivity 183
7.2.3 Second Viscosity Virial Coefficient 190
7.3 Transport Properties in the Critical Region 195
  7.3.1 Critical Nonclassical Behavior of Transport Properties 195
  7.3.2 Corresponding States for Transport Properties in the Critical Region 199
7.4 Viscosity in the Entire Fluid State 201
  7.4.1 Equation for Viscosity 201
  7.4.2 Corresponding-States Viscosity 202
  7.4.3 Comparison with Experimental Data 203
References 211

8. Surface Tension 215
8.1 Introduction 215
8.2 Critical State Theory for the Surface Tension 216
  8.2.1 Critical Behavior of the Surface Tension 216
  8.2.2 Critical Universality of the Surface Tension 217
8.3 Corresponding-States Surface Tension 219
  8.3.1 Statistical-Mechanical Derivation of the Macleod Equation 219
  8.3.2 Corresponding States of the Modified Macleod Equation 221
  8.3.3 Comparison with Experimental Data and Existing Methods 222
References 227