Opioid toxicity

TERMINOLOGY

CLINICAL CLARIFICATION

- Opioid toxicity results in severe, sometimes fatal, toxic effects that most commonly occur after overdose.
- Primary toxic effect of opioid overdose is decreased rate and depth of respiration leading to pulmonary edema.
 - May result in death from hypoxia and respiratory arrest before development of pulmonary edema.
- Effects on other organs include hypotension, bradycardia, and decreased body temperature.

CLASSIFICATION

- Toxicity caused by short-acting opioids, such as:
 - Morphine sulfate
 - Fentanyl
 - Oxycodone
 - Hydrocodone
 - Codeine
 - Heroin
- Toxicity caused by longer-acting and delayed-release opioids, including:
 - Extended-release morphine sulfate
 - Methadone
 - Oxymorphone
- Toxicity caused by opioid receptor agonist-antagonist drugs, such as:
 - Agonist at 1 opioid receptor/antagonist at a different opioid receptor
 - Pentazocine
 - Butorphanol
 - Nalbuphine
 - Dezocine
 - Partial agonist at a single opioid receptor
 - Buprenorphine
 - Meptazinol

DIAGNOSIS

CLINICAL PRESENTATION

- History
 - History of nonprescribed opioid use/abuse
 - Medical records may indicate previous use/abuse
 - Family or friends may confirm opioid use
 - Needles or other paraphernalia found near patient
 - History of prescribed opioid use
 - Pills, pill bottles, or paraphernalia found near patient
 - Common symptoms even without any available history
 - Apnea
 - Depressed consciousness
 - Can range from drowsiness to coma
- Physical examination
 - Common signs
 - Depressed respiratory rate is the most specific sign
 - A respiratory rate of 12 breaths or fewer per minute, with stupor, is highly suggestive of acute opioid toxicity,
 especially when accompanied by miosis or depressed consciousness
 - Reduced size and reactivity of pupils
 - Pupil constriction to less than 2 mm in diameter
 - Not always present, particularly if opioids were ingested along with other substances
 - Hypotension, bradycardia, and hypothermia usually present
 - Other examination findings
 - Skin
 - Evidence of fentanyl patches
 - Needle track marks
 - Recent injection marks are small, red, inflamed, or surrounded by slight bruising
 - Old injection sites show pigmentation change and atrophied skin
Opioid toxicity

- Neurologic
 - Seizures often associated with overdose of tramadol, propoxyphene, and meperidine, particularly if used concomitantly with medicines that lower seizure thresholds
 - Mucous membrane cyanosis is a late sign of hypoxia and hypotension
- Pulmonary
 - Pulmonary edema in patients with apnea or severe bradypnea
 - Rales and frothy sputum are a late sign of severe opioid toxicity

CAUSES AND RISK FACTORS

- Causes
 - Overdose of opioid drugs
 - Opioid drugs are substances that bind to 1 or more of the 4 opioid receptors (δ, κ, μ, and nociceptin receptors)
 - Toxicity is not necessarily dependent on dose of opioid used
 - Tolerance may be dramatically different in patient subpopulations
 - More overdose deaths are due to prescription opioids than nonprescription forms
 - Commonly prescribed opioids
 - Hydrocodone
 - Oxycodone
 - Morphine
 - Codeine
 - Hydromorphone
 - Oxymorphone
 - Methadone
 - Fentanyl patch
 - Tapentadol
 - Diphenoxylate
 - Commonly prescribed opioid receptor agonist/antagonist or partial-agonist drugs
 - Pentazocine
 - Butorphanol
 - Nalbuphine
 - Dezocine
 - Buprenorphine
 - Meptazinol
 - Most common nonprescription opioids
 - Heroin
 - Fentanyl (diverted or illicitly produced; typically added to heroin)
 - Carfentanil (diverted from veterinary sources; typically added to heroin)
 - Loperamide (in supratherapeutic doses)
 - Overdose of buprenorphine does not cause lethal respiratory depression in adults unless administered intravenously or combined with another respiratory depressant
 - Death from buprenorphine in children results from unintentional exposure secondary to medication being stored in sight, accessed from a bag or purse, or not being stored in its original packaging
 - Effects of toxic metabolites
 - Normeperidine from meperidine: lowers seizure threshold and accumulates with repeated dosing
 - Morphine-3-glucuronide from morphine: lowers seizure threshold and may be responsible for myoclonus and allodynia

- Risk factors and/or associations
 - Age
 - Higher incidence of opioid poisoning deaths in those aged 25 to 64 years, with highest incidence among those aged 45 to 54 years
 - Advanced age is associated with reduced clearance of morphine, fentanyl, codeine, and oxymorphone, increasing the risk of overdose (and requiring more caution with prescribing)
 - Children are more likely than adults to experience respiratory depression and death after unintentional exposure to agonist/antagonists like buprenorphine
 - Children may be more sensitive to codeine dosing and be accidently overdosed owing to the existence of rapid metabolizers of the prodrug codeine to the active drug morphine
 - Sex
 - Incidence higher in men
Opioid toxicity

- Ethnicity/race
 - Death rates in white populations are 4 times higher than in Hispanic or black populations
- Other risk factors/associations
 - Opioid toxicity is most highly associated with persons who are prescribed high doses of opioid analgesics (over 100 mg of morphine or equivalent per day)
 - Also associated with persons who seek care from multiple physicians or receive early refills
 - Risk of distribution to other persons
 - Prescription opioid death rates are highest in rural populations
 - Heroin death rates are highest in large central metropolitan areas
 - Populations at greatest risk for opioid toxicity
 - Persons with mental illness
 - Persons who report long-term medical use of opioids
 - Persons who report nonmedical use (ie, use without a prescription or medical need) of opioids in the past month
 - Hepatic impairment
 - Especially important to consider when using oxycodone, morphine, oxymorphone
 - Lower risk of toxicity with fentanyl and methadone
 - Renal impairment
 - Particularly important with morphine, hydromorphone, and other opioids with active metabolites
 - Less risk with fentanyl and methadone

DIAGNOSTIC PROCEDURES
- Primary diagnostic tools
 - Primary diagnosis is based on:
 - Classic symptoms of opioid overdose
 - Respiratory depression, often accompanied by central nervous system depression and miosis
 - Responsiveness to naloxone
- Laboratory
 - Urine toxicology tests
 - Screen for acetaminophen levels
 - Do not rely on toxicology screens for the initial management of suspected opioid overdose
 - A positive screen for opioids does not confirm toxicity
 - While positive toxicology results can indicate the presence of opioids, negative results do not necessarily mean absence of opioids
 - Some opioids such as fentanyl may not be detectable using typical toxicology screening methods
- Imaging
 - Obtain chest radiographs in opioid-toxic patients with rales or hypoxia to evaluate for pulmonary edema or aspiration pneumonia
- Functional testing
 - ECG can be used to monitor bradycardia
 - QTc prolongation is noticed in some patients receiving methadone (which typically increases the QTc by 12 milliseconds), increasing the chance of developing a ventricular arrhythmia, particularly torsades de pointes
 - Doses above 100 mg daily produce a dose-dependent QTc prolongation
 - Regular monitoring of the QTc is recommended for patients receiving therapy with methadone
 - QTc prolongation may also occur with loperamide toxicity

DIFFERENTIAL DIAGNOSIS
- Most common
 - Clonidine and oxymetazoline toxicity (particularly in pediatric patients)
 - Both drugs are centrally acting α-1 blocking agents that cause depressed mental status, bradycardia, hypotension, and miosis
 - Partial response to naloxone is common
 - No easy or consistent way to differentiate from opioid toxicity
 - Urine test for these drugs is typically only available at reference laboratories
 - Results will not change management of patient
 - Most children with clonidine or oxymetazoline toxicity will be treated as opioid toxic and vice versa
 - Acute subdural hematoma
 - Common presentation is depressed mental status
 - CT scan results differentiate pure opioid toxicity from subdural hematoma
Opioid toxicity

- Other central nervous system depressant toxicity (e.g., alcohol, barbiturate, benzodiazepine, cannabinoid)
 - Cannot differentiate easily by symptoms alone
 - Differentiate by ineffectiveness of naloxone
 □ Combined with quantitative alcohol serum levels, narrows diagnostic considerations
- Meningitis and encephalitis
 - Present with confusion and depressed mental status
 □ Additional symptoms include headache, vomiting, and fever
 - No response to naloxone
 - Differentiate by CT scan result revealing meningeal inflammation and lumbar puncture showing evidence of infection
- Hypoglycemia
 - Presents with confusion and depressed mental status
 - Differentiate using a bedside blood glucose test and response to oral glucose ingestion

TREATMENT

GOALS
- Reverse opioid toxicity
 o Treat with reversal agent
 o Secure airway
 o Restore respiratory status
 o Reverse central nervous system depression
- Avoid precipitating withdrawal

DISPOSITION
- Admission criteria
 o Respiratory depression
 ▪ Occurs after nonresponse to naloxone or during resedation after naloxone wears off
 ▪ May be accompanied by stupor and hypotension
 ▪ Admit children aged 3 years or younger exposed to opioids other than immediate-release formulations for 24-hour observation if ingestion of agents is suspected from history but cannot be confirmed
 o Criteria for ICU admission: Patients whose toxicity is due to long-lasting and extended-release opioids
 □ Long-lasting and extended-release opioids cause resedation after naloxone wears off
 □ Patients require prolonged observation for respiratory depression and airway compromise
 □ Patients who require a naloxone infusion
 □ Patients with respiratory problems who require orotracheal intubation
- Recommendations for specialist referral
 o Refer to medical toxicologist for specialty management of opioid toxicity
 o Refer to pain or addiction specialist to prevent recurrence and treat addiction

TREATMENT OPTIONS
- First priority is to restore respiration using a bag-valve mask or orotracheal intubation if necessary
- Drug treatment is the same regardless of causative opioid
 o Naloxone therapy is the standard treatment for opioid toxicity
 o Naloxone prescriptions or access to OTC naloxone is an important treatment option for high-risk individuals
- Drug therapy
 o Naloxone
 ▪ Dose is empiric and depends on the amount of opioid the patient received or has taken
 ▪ IV administration is most common and preferable method of delivery
 □ IV naloxone continuous infusion is difficult and has several drawbacks
 □ Difficult to titrate adequate dose to maintain adequate respiration but avoid withdrawal
 □ Recommended infusion strategy of hourly dose to match dose required to reverse apnea has not been validated
 □ Relying on an IV infusion of drug to maintain ventilation
 □ IV catheters can become kinked, be pulled out, or become otherwise dysfunctional
 □ Patients still require ICU admission for monitoring
 □ Intramuscular, intranasal, or pulmonary administration should be used when IV is not an option
 □ Oral administration is not recommended because of high first-pass metabolism rate of drug
 □ Patient should be observed for 4 to 6 hours before discharge is considered
Opioid toxicity

- Toxic effects often reappear within 30 minutes, requiring further naloxone because of its short half-life
- A gradual titration in naloxone dose is preferential to isolated larger doses to avoid withdrawal
- Opioids that require larger doses of naloxone
 - Natural opium derivatives
 - Codeine
 - Methadone
 - Synthetic opiates
 - Diphenoxylate
 - Propoxyphene
 - Mixed opioid agonist-antagonists
 - Pentazocine
 - Butorphanol
 - Nalbuphine

- Intermittent Intravenous, Intramuscular, Subcutaneous, or Intraosseous dosage (standard syringe):
 - Naloxone Hydrochloride Solution for injection; Neonates: 0.1 mg/kg/dose IV/IM is recommended in clinical guidelines; may require repeated doses. FDA-approved labeling recommends 0.01 mg/kg/dose IV, IM, or subcutaneously initially; may repeat every 2 to 3 minutes.
 - Naloxone Hydrochloride Solution for injection; Infants and Children younger than 5 years or weighing 20 kg or less: 0.1 mg/kg/dose IV/IO (PALS recommendation); may require repeated doses. FDA-approved labeling recommends 0.01 mg/kg/dose IV, IM, or subcutaneously initially; may repeat every 2 to 3 minutes.
 - Naloxone Hydrochloride Solution for injection; Children and Adolescents 5 to 17 years or weighing more than 20 kg: 2 mg IV/IO (PALS recommendation); may require repeated doses; FDA-approved labeling recommends 0.01 mg/kg/dose IV, IM, or subcutaneously initially; may repeat every 2 to 3 minutes.
 - Naloxone Hydrochloride Solution for injection; Adults: 4 to 2 mg IV, IM, or subcutaneously, up to a total dose of 10 mg; doses may be repeated every 2 to 3 minutes PRN. In emergency settings, guidelines recommend 0.4 to 2 mg IV; alternatively, 0.4 to 0.8 mg may be given IM/subcutaneously if systemic perfusion is adequate.

- Endotracheal dosage:
 - Naloxone Hydrochloride Solution for injection; Infants and Children younger than 5 years or weighing 20 kg or less: Optimal ET dosage has not been determined; a dose of 2 to 3 times the IV dose has been recommended (equivalent to 0.2 to 0.3 mg/kg/dose ET).
 - Naloxone Hydrochloride Solution for injection; Children and Adolescents 5 to 17 years or weighing more than 20 kg: Optimal ET dosage has not been determined; a dose of 2 to 3 times the IV dose has been recommended (equivalent to 4 to 6 mg/dose ET).
 - Naloxone Hydrochloride Solution for Injection; Adults: Optimal ET dosage has not been determined. In emergency settings, guidelines recommend 0.4 to 2 mg via ET tube.

- Intranasal dosage (Narcan nasal spray):
 - Naloxone Hydrochloride Nasal spray, solution; Adults, Adolescents, Children, Infants, and Neonates: 1 spray (2 mg or 4 mg of naloxone) by intranasal administration. Seek immediate medical attention after administration of the first dose. May repeat dose in alternate nostrils every 2 to 3 minutes as needed; each device contains a single dose. Monitor closely until emergency medical personal arrive; continue to monitor pediatric patients for at least 24 hours.

- Continuous Intravenous or Intraosseous Infusion dosage:
 - Naloxone Hydrochloride Solution for injection; Neonates, Infants, Children, and Adolescents: Limited data available. If repeated intermittent doses are required, calculate initial infusion rate based on effective intermittent dose; use two-thirds up to the full intermittent dose as initial hourly infusion rate (i.e., if a 0.02 mg/kg IV dose was effective, initiate infusion at 13 to 20 mcg/kg/hour [0.013 to 0.02 mg/kg/hour]). Titrate as needed. A continuous infusion rate of 2 to 160 mcg/kg/hour IV/IO has been suggested; however, most reports have utilized 24 to 44 mcg/kg/hour IV. When appropriate, wean in 25% increments while closely monitoring patient.
 - Naloxone Hydrochloride Solution for injection; Adults: Loading dose of 0.005 mg/kg IV followed by 0.0025 mg/kg/hour IV.

- Naloxone can precipitate withdrawal symptoms including:
 - Anxiety, irritability, and restlessness
 - Gooseflesh
 - Hot and cold sweats
 - Muscle, bone, and joint aches
 - Tremor
 - Nausea, vomiting, and diarrhea
 - Increased resting pulse rate
Opioid toxicity

- **Nondrug and supportive care**
 - For apnea of fewer than 12 breaths per minute
 - Provide ventilation with a bag-valve mask
 - Perform chin-lift and jaw-thrust maneuvers to diminish hypercarbia
 - Procedures
 - Orotracheal intubation
 - General explanation
 - Insertion of a tube into the trachea to restore respiration
 - Safely ensures oxygenation and ventilation while providing protection against aspiration
 - Indication
 - To gain definitive control of the airway to restore respiration
 - Special populations
 - Children
 - Overdose characterized by:
 - Unexpectedly severe poisoning based on dose received
 - Prolonged toxic effects
 - Admit children aged 3 years or younger exposed to opioids other than immediate-release formulations for 24-hour observation if ingestion of agents is suspected from history but cannot be confirmed
 - Children who ingest opioids may require larger doses of naloxone because they often ingest a higher dose than adults per kilogram of body weight
 - Elderly
 - Age-related changes in physiology and body composition may cause persistent intoxication

- **MONITORING**
 - For patients with opioid toxicity, monitoring of respiratory adequacy and cardiovascular stability is mandatory
 - Pulse oximetry or end-tidal CO₂ monitoring to monitor respiration
 - Periodic (every 15 minutes) blood pressure monitoring to assess for hypotension

- **COMPLICATIONS AND PROGNOSIS**

 - **COMPLICATIONS**
 - Respiratory depression and apnea
 - Apneic patients who receive naloxone frequently develop noncardiogenic pulmonary edema
 - Central nervous system depression with airway compromise
 - Vomiting can result in aspiration of gastric contents into the lungs
 - Head trauma or brain injury due to falls related to loss of consciousness
 - Multiple complications can occur secondary to prolonged hypotension, bradycardia, and hypothermia
 - Death may occur in severe cases

 - **PROGNOSIS**
 - Recurrence is likely in patients with opioid abuse history
 - Mortality rate is 5.1 per 100,000 with opioid analgesics

- **SCREENING AND PREVENTION**

 - **SCREENING**
 - **PREVENTION**
 - Reduce the following by educating doctors and implementing prescription drug monitoring programs:
 - Inappropriate prescription of opioid analgesics
 - Chronic prescription of opioids for acute pain
 - Prescription of high-dose opioid analgesics
 - Use prescription and insurance data to screen and reduce opioid prescription for:
 - Persons seeking care from multiple physicians
 - Persons obtaining early refills
 - At risk of providing opioids to others
 - Increase availability of opioid-dependence treatment, especially office-based medication-assisted treatment with buprenorphine/naloxone
 - To decrease risk of death, distribute naloxone and promote education on its use in communities where opioid toxicity is likely
 - Provide naloxone to patients receiving chronic opioid therapy, particularly those requiring higher doses, and train patient and family members in intranasal application when overdose is suspected
Opioid toxicity

- Refer opioid abusing/dependent patients to Narcotics Anonymous or similar support programs
 - Inpatient and outpatient rehabilitation counseling is an important aspect of prevention

SYNOPSIS

KEY POINTS

- Opioid toxicity causes respiratory depression, generally accompanied by depressed consciousness and miosis
 - Diagnosis is made on these 3 primary symptoms, which may not always present together, paired with a positive response to naloxone
- Opioid toxicity is often coupled with ingestion of other substances, such as acetaminophen or ethanol
- Treatment involves restoration of respiration using a bag-valve mask or intubation (if necessary)
- Treatment with IV naloxone, a competitive opioid antagonist, is the gold standard reversal agent
- Continuously observe patients receiving naloxone because naloxone has a short half-life
 - Observation should be longer than expected elimination time for naloxone (minimum observation time 1-2 hours)
- Naloxone, while necessary, can cause withdrawal symptoms, which can be stressful to patients and caregivers; cautious titration to desired effect (reversal of respiratory suppression) is recommended
- Recurrence is likely in patients with opioid abuse history

URGENT ACTION

- First priority is to restore respiration
- If symptoms are present, begin treating with naloxone to reverse opioid toxicity; do not wait for urine drug screen or immunoassay results to confirm diagnosis
- Admit to ICU if patient is intoxicated by long- lasting opioids, has recurrent respiratory depression, requires naloxone infusion, or requires intubation

PITFALLS

- Naloxone can precipitate opioid withdrawal and is titrated for best effect
- Altered mental status should not be attributed to opioid toxicity solely based on positive drug screen results; the screen is qualitative not quantitative
- May present along with head trauma, which can hinder the restoration of consciousness

SELECTED REFERENCES