Making use of Querylets
Easily construct targeted text searches following a few simple rules.

Learning objectives
• Understand the structure and uses of a Querylet
• Recognize components of a text query
• Build a text search based on simple rules
• Use tools to find optimal search terms
• Implement truncation forms to account for synonyms
• Use operators to connect search terms and specify the search scope

Search question
Find literature on the ferroelectric properties of Barium-containing substances.
1. Perform a **Literature** search.

The Literature search form is populated by default with 11 **Querylets**, one for each of 11 bibliographic data types. Enter a term into a **Querylet**, and Reaxys will search for that term in the corresponding information field of the database.

**Citation Basic Index** searches for terms in the title, abstract and keyword fields of bibliographic records. This is a good place to start.

2. **Querylets** are highly flexible input fields, so it is possible to specify exactly what to search.

**Lookup** provides an extensive list of index keywords, single words and phrases, to help select the right terms.

**Enter search terms here. Auto-suggest assists with relevant single-word terms.**
3. Prepare a search strategy first and take advantage of Reaxys features to optimize it.

Critical thinking
Build an effective search strategy by following two fundamental principles:
Principle 1: Find and use the best search term(s) for an exact question, and then
Principle 2: Connect these search terms to reflect the type of answers needed

Principle 1: finding terms

Find the best search terms
Use the auto-suggest function of Querylets to help select index terms used in Reaxys, to find synonyms and to ensure correct spelling of words.

Use terms that make sense
Scroll through Lookup to find relevant Index Keywords (systematic terms).
Reaxys includes Index Keywords from 6 different sources:

- Authors (terms listed by authors)
- Reaxys
- Compendex (Engineering and Technology database)
- Embase (Biomedical database)
- GeoBase (Geographical, Earth and Ecological sciences database)
- Medline (Life and Biomedical sciences database)

Incorporate flexibility into terms
Terms may not appear in a record exactly as entered in a search field. Use left, right or double truncation to include terms with common word roots (e.g., herbICIDe, herbicICIDes, herbICIDal, fungICIDe, insectICIDe, etc.).

Add * to the left, right or both sides of a word (e.g., *ICID*) or use the truncation menu:
Principle 2: linking terms

**Boolean operators**
- **AND** requires all terms entered to be included in a hit.
- **OR** allows any term entered to be included in a hit.
- **NOT** requires the first term to be in a hit but excludes hits with the second.

**Proximity operators**
- **NEXT** requires two entered terms to appear in the specified order in a hit.
- **NEAR** allows the two entered terms to appear in either order.

**Other operators**
- **Parentheses** ( ) allow nesting terms.
- **Semicolon** ; is an alternative to OR.
- **Quotation marks** ‘ ‘ indicate an exact phrase to search.
4. Use **Lookup** to explore the index terms associated with ferroelectric.

Antiferroelectric might be an interesting property to add to the search.

5. Build the query to include relevant terms and exclude irrelevant hits.

**Double truncation** to include ferroelectric, ferroelectricity, antiferroelectric, etc.  
**AND** limits the hit set to only those including Barium.  
The **parentheses** nest the synonyms Barium and Ba so both terms are searched.
6. The search retrieves 9080 citations, sorted by Relevance. By default, hits are sorted by Relevance, but can also be sorted by Journal Title, Author, Document Type and Publication Year.

Underlying the Relevance sorting is an algorithm that ranks records based on:
- the number of your search terms found in a record (hit terms that appear in blue)
- the ratio of hit terms to total number of terms in the record
- The proximity of hit terms in a record

Looking at the first and last record of this hit set clearly exemplifies ranking by Relevance. The first record has several hit terms in close proximity, whereas the last record has very few hit terms.
7. Each record is an entry point for further exploration.

Keywords used to make this citation discoverable come from the authors, Reaxys and Compendex (a leading engineering and technology database). Consider using these terms to expand, narrow down, or modify the search strategy.

Click on a name to access author information in Scopus.

Access the full-text article.

View citing articles in Scopus.
CONTACT US
To request information or a product demonstration, please visit elsevier.com/reaxys or email us at reaxys@elsevier.com.

Visit elsevier.com/rd-solutions or contact your nearest Elsevier office.

ASIA AND AUSTRALIA
Tel: +65 6349 0222
Email: sginfo@elsevier.com

JAPAN
Tel: +81 3 5561 5034
Email: jpinfo@elsevier.com

KOREA AND TAIWAN
Tel: +82 2 6714 3000
Email: krinfo.corp@elsevier.com

EUROPE, MIDDLE EAST AND AFRICA
Tel: +31 20 485 3767
Email: nlinfo@elsevier.com

NORTH AMERICA, CENTRAL AMERICA AND CANADA
Tel: +1 888 615 4500
Email: usinfo@elsevier.com

SOUTH AMERICA
Tel: +55 21 3970 9300
Email: brinfo@elsevier.com

REAXYS is a trademark of Reed Elsevier Properties SA, used under license. Copyright© 2015. All rights reserved.
September 2015