Dative Bonding Between Closed-Shell Atoms: The BeF⁻ Anion

Mallory L. Green, Pearl Jean, Michael C. Heaven
Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States

Beryllium: Chemistry’s Littlest Rule Breaker

- Beryllium is known to exhibit unexpectedly strong attractive forces under conditions where it is considered a closed shell atom:
 - Be₂⁺ dimer
 - He-BeO
- Understanding abnormal bonding with beryllium can:
 1. Improve theoretical models
 2. Push the bounds of our fundamental chemical understanding.
- BeF⁻ anion has only been studied theoretically, with a suggested bond energy of 342 kJ/mol.²
- In our work, we seek to provide experimental confirmation of the bonding in BeF⁻.

Confirmation of Bonding in BeF⁻

Table 1. Electron affinities (EA), vibrational frequencies (ω₁), and bond dissociation energies (D₀) for BeF and BeF⁻. All values are given in wavenumbers (cm⁻¹).

<table>
<thead>
<tr>
<th>Compound</th>
<th>EA</th>
<th>ω₁</th>
<th>D₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeF</td>
<td>8697 ± 6</td>
<td>8692</td>
<td>47480</td>
</tr>
<tr>
<td>BeF⁻</td>
<td>8189</td>
<td>45443</td>
<td></td>
</tr>
</tbody>
</table>

Tunable laser set to 1734 cm⁻¹ (570.2 nm)

Velocity Map Imaging Photoelectron Spectroscopy

VMI Instrument:

Adjustment of molecular beam by ion optics
Imaging of electrons via velocity map imaging (VMI) optics and camera
Laser ablation and mass separation of ions

What we are imaging:

electron kinetic energy (eKE) detection range
Tunable laser
Neutral Ground State
Electron binding energy (eBE) for 0→0 transition
Anion Ground State

- Electrons are removed from the anion using a high energy photon (hv) from a pulsed laser.
- Any energy that is not used in the photodetachment process is imparted to the removed electron as kinetic energy (eKE).
- All electrons with the same eKE are mapped to the same distance, r, from the center of the detector screen.
- Images are converted into spectra, and electron binding energies (eBE), or the A → A transition energies, are determined by subtracting the eKE from the known laser energy.

References

Acknowledgements

The author would like to thank the NSF for their funding, as well as Elsevier, and the Reayes Prize board, for allowing me the opportunity to present my work. A special thanks to Sean Bresler for his help with troubleshooting of the instrument.

Future Directions: Diving Deeper

Confirmation of dative bonding in BeF⁻ introduces the question: What characteristics of beryllium allow for this phenomenon?

- electron-correlation
- excited state participation
- Be polarizability
- Lewis acidity of Be

By understanding what makes beryllium unique, we can better refine our knowledge of chemical bonding, in general.