Existence and multiplicity of solutions for critical elliptic equations with multi-polar potentials in symmetric domains

Qianqiao Guo *, Junqiang Han, Pengcheng Niu
Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, 710129, China

ABSTRACT

In this paper, we consider the elliptic equations with critical Sobolev exponents and multi-polar potentials in bounded symmetric domains and prove the existence and multiplicity of symmetric positive solutions by using the Ekeland variational principle and the Lusternik–Schnirelmann category theory.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The critical elliptic problem has been studied extensively since the initial work [1] by Brézis and Nirenberg. The critical elliptic problem with one Hardy-type potential has also attracted much attention in recent years. We refer the interested readers to a partial list [2–11] and the references therein. Here, we are concerned with the critical elliptic problem with multi-polar (Hardy-type) potentials. In [12], Cao and Han considered the problem...
and proved the existence of positive and sign-changing solutions in bounded smooth domains, where \(2^* := \frac{2N}{N-2} \) is the critical Sobolev exponent. In [13], problem (1.1) with \(K(x) \equiv 1 \) was investigated by Felli and Terracini, and the existence of positive solutions with the smallest energy was deduced both in \(\mathbb{R}^N \) and in bounded smooth domains. In [14], Felli and Terracini also studied problem (1.1) with symmetric multi-polar potentials in \(\mathbb{R}^N \) when \(K(x) \equiv 1 \) and showed the existence of symmetric positive solutions. Other related results on critical elliptic problems with multiple Hardy-type potentials can be seen in [15–17] and the references therein.

However, as far as we know, there are few results about the multiplicity of solutions for the critical elliptic problem with multi-polar potentials. In this paper, motivated by [14,18], we consider the critical elliptic problem with symmetric multi-polar potentials in bounded symmetric domains and prove the existence and multiplicity of symmetric positive solutions.

More accurately, we are interested in the problem

\[
\begin{aligned}
\mathcal{P}_{\lambda_0, K} & \left\{ \begin{array}{l}
\begin{aligned}
-\Delta u - \mu_0 \frac{u}{|x|^2} - \sum_{l=1}^{m} \sum_{i=1}^{k} \mu_i \frac{u}{|x-a_i|^2} &= \lambda_0 u + K(x)|u|^{2^*-2} u & \text{in } \Omega,

u &= 0 & \text{on } \partial \Omega,
\end{aligned}
\end{array} \right. \\
& \text{for } \Omega \subset \mathbb{R}^N (N \geq 4) \text{ is a } \mathbb{Z}_k \times SO(N-2)-\text{invariant bounded smooth domain},
\end{aligned}
\]

where \(\Omega \subset \mathbb{R}^N (N \geq 4) \) is a \(\mathbb{Z}_k \times SO(N-2) \)-invariant bounded smooth domain, \(k \geq 3, \mu_0, \lambda_0 \in \mathbb{R}, \mu_i \in \mathbb{R}, \ l = 1, 2, \ldots, m, \) and \(K(x) \) is a \(\mathbb{Z}_k \times SO(N-2) \)-invariant positive bounded function on \(\bar{\Omega} \). Here the domain \(\Omega \) is said to be \(\mathbb{Z}_k \times SO(N-2) \)-invariant if \((e^{2\pi \sqrt{T}/k}y, Tz) \in \Omega, \forall x = (y, z) \in \Omega \subset \mathbb{R}^2 \times \mathbb{R}^{N-2} \) and \(K(x) \) is said to be \(\mathbb{Z}_k \times SO(N-2) \)-invariant on \(\bar{\Omega} \) if \(K(y, z) = K(e^{2\pi \sqrt{T}/k}y, Tz), \forall x = (y, z) \in \bar{\Omega} \subset \mathbb{R}^2 \times \mathbb{R}^{N-2} \), where \(T \) is any rotation of \(\mathbb{R}^{N-2} \). Note that if \(\Omega \) is \(\mathbb{Z}_k \times SO(N-2) \)-invariant, we can write \(\Omega = \Omega^{(2)} \times B^{(N-2)}(0, R) \subset \mathbb{R}^2 \times \mathbb{R}^{N-2} \), where \(\Omega^{(2)} \) is \(\mathbb{Z}_k \)-invariant in \(\mathbb{R}^2 \) (that is, \(e^{2\pi \sqrt{T}/k}y \in \Omega^{(2)}, \forall y \in \Omega^{(2)} \) and \(B^{(N-2)}(0, R) \) is a ball in \(\mathbb{R}^{N-2} \) centered at the origin with radius \(R \)). The group \(\mathbb{Z}_k \times SO(N-2) \) acts on \(H^1_{\text{loc}}(\Omega) \) as \(u(y, z) \rightarrow u(e^{2\pi \sqrt{T}/k}y, Tz) \). Given \(m \) regular polygons with \(k \) sides, centered at the origin and lying on the plane \(\mathbb{R}^2 \times \{0\} \subset \mathbb{R}^N \), we assume that

(A1). \(a^l_i \in \Omega, i = 1, 2, \ldots, k, \) are the vertices of the \(l \)th polygon, \(l = 1, 2, \ldots, m, \)

(A2). \(\Omega \supset B^{(2)}(0, R) \times B^{(N-2)}(0, \tilde{R}) \) with \(R > \max \{ r_l, l = 1, 2, \ldots, m \} \), where \(r_l = |a^1_l| = |a^2_l| = \cdots = |a^k_l| \).

It is easy to see that the above assumptions can be easily satisfied, such as, a domain

\[
\begin{aligned}
\Omega &= B^{(2)}(0, R) \times B^{(N-2)}(0, \tilde{R}) \\
&= \{ (x_1, x_2, x_3, \ldots, x_N) | x_1^2 + x_2^2 < R^2, x_3^2 + \cdots + x_N^2 < \tilde{R}^2 \}
\end{aligned}
\]
with \(a_i^l = \{a_i^l(2), 0\} \in \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^N \), \(a_i^l(2) = e^{2(i-1)\pi \sqrt{-1}/k} \{r_l, 0\}, 0 < r_1 < r_2 < \cdots < r_m < R, i = 1, 2, \ldots, k, \) and \(l = 1, 2, \ldots, m. \)

We will prove the existence and multiplicity of \(\mathbb{Z}_k \times \mathbb{S}(N - 2) \)-invariant positive solutions for the problem \((\mathcal{P}_{\lambda_0,K})\).

Before that, we also consider the limiting case of the problem \((\mathcal{P}_{\lambda_0,K})\), that is,

\[
(\mathcal{P}_{\lambda_0,K}^\infty) \begin{cases}
-\Delta u - \mu_0 \frac{u}{|x|^2} - \sum_{l=1}^m k\mu_l \left(\delta_{S_{r_l}} * \frac{1}{|x|^2} \right) u = \lambda_0 u + K(x)|u|^{2^*-2}u & \text{in } \Omega_B(R, \tilde{R}), \\
u = 0 & \text{on } \partial\Omega_B(R, \tilde{R}),
\end{cases}
\]

where \(S_{r_l} := \{(x,0) \in \mathbb{R}^2 \times \mathbb{R}^{N-2} : |x| = r_l\} \), the distribution \(\delta_{S_{r_l}} \in \mathcal{D}'(\mathbb{R}^N) \) supported in \(S_{r_l} \) and defined by, as in [14],

\[
\mathcal{D}'(\mathbb{R}^N)(\delta_{S_{r_l}}, \varphi)_{\mathcal{D}'(\mathbb{R}^N)} := \frac{1}{2\pi r_l} \int_{S_{r_l}} \varphi(x) d\sigma(x), \quad \forall \varphi \in \mathcal{D}(\mathbb{R}^N)
\]

with \(d\sigma \) the line element on \(S_{r_l} \), \(\mathcal{D}(\mathbb{R}^N) \) the space of smooth functions with compact support in \(\mathbb{R}^N \), \(\Omega_B(R, \tilde{R}) := B_{r_1}(0, R) \times B_{r_m}(0, \tilde{R}) \) with \(R > \max\{r_l, l = 1, 2, \ldots, m\} \), \(N \geq 4 \) and \(K(x) \) a \(\mathbb{S}(2) \times \mathbb{S}(N-2) \)-invariant positive bounded function on \(\Omega_B(R, \tilde{R}) \). For simplicity of notation, we write \(\Omega_B(R) \) instead of \(\Omega_B(R, \tilde{R}) \) in the sequel. Here \(K(x) \) is said to be \(\mathbb{S}(2) \times \mathbb{S}(N-2) \)-invariant on \(\Omega_B(R) \) if \(K(y, z) = K(|y|, |z|), \forall x = (y, z) \in \Omega_B(R) \subset \mathbb{R}^2 \times \mathbb{R}^{N-2} \). We will prove the existence of \(\mathbb{S}(2) \times \mathbb{S}(N-2) \)-invariant positive solutions for the problem \((\mathcal{P}_{\lambda_0,K}^\infty)\).

The paper is organized as follows. In Section 2, we give some preliminary results. Section 3 is devoted to the existence of one \(\mathbb{S}(2) \times \mathbb{S}(N-2) \)-invariant positive solution for the problem \((\mathcal{P}_{\lambda_0,K}^\infty)\), provided that \(K(x) \) satisfies some growth condition at zero; for details see Theorem 3.1. In Section 4, we show the existence of one \(\mathbb{Z}_k \times \mathbb{S}(N-2) \)-invariant positive solution for the problem \((\mathcal{P}_{\lambda_0,K})\) in Theorem 4.1. Some growth conditions on \(K(x) \) are needed, of course. In Section 5, the multiplicity of \(\mathbb{Z}_k \times \mathbb{S}(N-2) \)-invariant positive solutions for the problem \((\mathcal{P}_{\lambda_0,K})\) is obtained by the Ekeland variational principle and the Lusternik–Schnirelmann category theory, respectively. Here, besides the growth conditions on \(K(x) \), the parameters \(\lambda_0, \mu_0, \mu_l, l = 1, 2, \ldots, m, \) are requested to be close to zero; for details see Theorems 5.1 and 5.9. At last, a nonexistence result is proved in Appendix.

2. Notations and preliminary results

Throughout this paper, positive constants will be denoted by \(C \).

Denote

\[
(H_0^1)^{\text{circ}}(\Omega_B(R)) := \{u(y, z) \in H_0^1(\Omega_B(R)) : u(y, z) = u(|y|, |z|)\},
\]

where \((y, z) \in \Omega_B(R) \subset \mathbb{R}^2 \times \mathbb{R}^{N-2} \), and

\[
(H_0^1)^k(\Omega) := \{u(y, z) \in H_0^1(\Omega) : u(e^{2\pi \sqrt{-1}ky}, z) = u(y, |z|)\},
\]
where \((y, z) \in \Omega \subset \mathbb{R}^2 \times \mathbb{R}^{N-2}\).

It is known that the nonzero critical points of the energy functional

\[
J_{\text{circ}}(u) := \frac{1}{2} \int_{\Omega_B(R)} \left(\|\nabla u\|^2 - \mu_0 \frac{u^2}{|x|^2} \right) \, dx
- \sum_{l=1}^m \frac{k_l \mu_l}{2} \int_{\Omega_B(R)} \left(\frac{1}{2\pi r_l} \int_{S_{r_l}} \frac{u^2(y)}{|x - y|^2} \, d\sigma(x) \right) \, dy
- \frac{\lambda_0}{2} \int_{\Omega_B(R)} u^2 \, dx - \frac{1}{2^*} \int_{\Omega_B(R)} K(x)|u|^{2^*} \, dx
\]

defined on \((H_0^1)^{\text{circ}}(\Omega_B(R))\), and the energy functional

\[
J_k(u) := \frac{1}{2} \int_{\Omega} \left(\|\nabla u\|^2 - \mu_0 \frac{u^2}{|x|^2} \right) \, dx
- \sum_{l=1}^m \sum_{i=1}^k \frac{\mu_i}{2} \int_{\Omega} \frac{u^2}{|x - u_i|^2} \, dx
- \frac{\lambda_0}{2} \int_{\Omega} u^2 \, dx
- \frac{1}{2^*} \int_{\Omega} K(x)|u|^{2^*} \, dx
\]
defined on \((H_0^1)^k(\Omega)\) are equivalent to the nontrivial weak solutions for the problem \((\mathcal{P}_{\lambda_0,K})\) and \((\mathcal{P}_{\lambda_0,K})\), respectively.

We show a Hardy-type inequality first, which is an improved version of Theorem 1.1 in [14].

Proposition 2.1. Let \(\Omega' \subset \Omega_B \subset \mathbb{R}^N (N \geq 3)\), be bounded or not, and \(R > r > 0\). Then, for any \(u \in H_0^1(\Omega')\), the map \(y \mapsto |u(y)|^2 \int_{S_r} \frac{d\sigma(x)}{|x - y|^r} \in L^1(\Omega')\) and

\[
\bar{m} \int_{\Omega'} |u(y)|^2 \left(\frac{1}{2\pi r} \int_{S_r} \frac{d\sigma(x)}{|x - y|^2} \right) \, dy \leq \int_{\Omega'} |\nabla u(y)|^2 \, dy,
\]

where the constant \(\bar{m} := \left(\frac{N-2}{2} \right)^2\) is optimal and not attained.

Proof. If \(\Omega' = \Omega_B\) then we can prove as Theorem 1.1 in [14] that,

\[
\left(\frac{N-2}{2} \right)^2 \geq \inf_{u \in H_0^1(\Omega_B(R)) \setminus \{0\}} \frac{\int_{\Omega_B(R)} |\nabla u(y)|^2 \, dy}{\int_{\Omega_B(R)} |u(y)|^2 \left(\frac{1}{2\pi r} \int_{S_r(z)} \frac{d\sigma(x)}{|x - y|^r} \right) \, dy},
\]

and the constant \(\left(\frac{N-2}{2} \right)^2\) is optimal and not attained. Then for any domain \(\Omega' \subset \Omega' \subset \mathbb{R}^N\), the results follow. \(\square\)

Remark 2.2. (1) If \(\Omega' = \mathbb{R}^N\), then Proposition 2.1 is reduced to Theorem 1.1 in [14].

(2) For any domain \(\Omega'\) (bounded or not) with \((z, 0) \in \Omega' \subset \mathbb{R}^2 \times \mathbb{R}^{N-2}\), if \(\{(x, 0) \in \mathbb{R}^2 \times \mathbb{R}^{N-2} : |x - z| \leq r\} \subset \Omega'\), then it is also easy to prove that

\[
\bar{m} \int_{\Omega'} |u(y)|^2 \left(\frac{1}{2\pi r} \int_{S_r(z)} \frac{d\sigma(x)}{|x - y|^2} \right) \, dy \leq \int_{\Omega'} |\nabla u(y)|^2 \, dy,
\]

where \(S_r(z) := \{(x, 0) \in \mathbb{R}^2 \times \mathbb{R}^{N-2} : |x - z| = r\}\), the constant \(\bar{m} = \left(\frac{N-2}{2} \right)^2\) is optimal and not attained.
Denote by $D^{1,2}(\mathbb{R}^N)$ the closure space of $C^\infty_0(\mathbb{R}^N)$ with respect to the norm

$$||u||_{D^{1,2}(\mathbb{R}^N)} := \left(\int_{\mathbb{R}^N} |\nabla u|^2 dx\right)^{1/2}.$$

The limiting problem

$$\begin{cases}
-\Delta u - \mu \frac{u}{|x|^2} = |u|^{2^*-2}u & \text{in } \mathbb{R}^N, \\
u > 0 & \text{in } \mathbb{R}^N \setminus \{0\}, u \in D^{1,2}(\mathbb{R}^N),
\end{cases} \quad (2.2)$$

where $\mu < \overline{\mu}$, admits a family of solutions

$$U_\epsilon^\mu := C_\mu(N) \left(\frac{\epsilon}{\epsilon^2|x|/(\sqrt{\overline{\mu}} - \sqrt{\mu}) + |x|(\sqrt{\overline{\mu}} + \sqrt{\mu})/\sqrt{\overline{\mu}}} \right)^{\frac{N-2}{2}},$$

with $\epsilon > 0$ and $C_\mu(N) = (\frac{4N(N-\mu)}{N-2})^{\frac{N-2}{4}}$; see [19–22]. Moreover, for $0 \leq \mu < \overline{\mu}$, all solutions of (2.2) take the above form and these solutions minimize

$$S(\mu) := \min_{u \in D^{1,2}(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\mathbb{R}^N} (|\nabla u|^2 - \mu \frac{|u|^2}{|x|^2}) dx}{(\int_{\mathbb{R}^N} |u|^{2^*} dx)^{2/2^*}},$$

and

$$\int_{\mathbb{R}^N} (|\nabla U_\epsilon^\mu|^2 - \mu \frac{|U_\epsilon^\mu|^2}{|x|^2}) dx = \int_{\mathbb{R}^N} |U_\epsilon^\mu|^2 dx = S(\mu)^{\frac{N}{2^*}}.$$

Note that $S(0) := S$ is the best Sobolev constant.

The following lemma is from [14].

Lemma 2.3. Let $N \geq 4$, $\mu < \overline{\mu}$. If $u \in D^{1,2}(\mathbb{R}^N)$ is a solution for problem (2.2), then there exist positive constants $\kappa_0(u)$ and $\kappa_\infty(u)$ such that

$$u(x) = |x|^{\frac{N-2}{2}(1-\nu_\mu)}[\kappa_0(u) + O(|x|^{\alpha})], \quad \text{as } x \to 0, \quad (2.3)$$

$$u(x) = |x|^{\frac{N-2}{2}(1+\nu_\mu)}[\kappa_\infty(u) + O(|x|^{-\alpha})], \quad \text{as } |x| \to +\infty, \quad (2.4)$$

for some $\alpha \in (0,1)$, where $\nu_\mu = (1 - \frac{4\mu}{(N-2)^2})^{1/2}$. And hence there exists a positive constant $\kappa(u)$ such that

$$\frac{1}{\kappa(u)} U_\mu^1 \leq u(x) \leq \kappa(u) U_\mu^1. \quad (2.5)$$

Denote, for any $u \in D^{1,2}(\mathbb{R}^N)$,

$$u_\epsilon(x) := \epsilon^{-\frac{N-2}{2}} u \left(\frac{x}{\epsilon} \right), \quad \text{for any } \epsilon > 0.$$

For any solution $u^\mu \in D^{1,2}(\mathbb{R}^N)$ for problem (2.2), denote $V(x) = \varphi(x)|u^\mu(x)|$ with $\varphi(x)$ satisfying

$$\varphi(x) \in C^\infty_0(B(0,r)), \quad 0 \leq \varphi(x) \leq 1, \varphi(x) \equiv 1 \text{ if } x \in B \left(0, \frac{r}{2} \right), \quad |\nabla \varphi(x)| \leq C(2.6)$$

where $0 < r < 1$ small enough.

Now we give the following lemma.
Lemma 2.4. Let $N \geq 4$, $\mu < \overline{\mu}$. Then there hold

$$
\int_{B(0,r)} |V|^2 \, dx = \begin{cases}
O(\epsilon^2) & \text{if } \mu < \overline{\mu} - 1, \\
O(\epsilon^2 \ln \epsilon) & \text{if } \mu = \overline{\mu} - 1, \\
O(\epsilon^2 \sqrt{\mu - \mu}) & \text{if } \mu > \overline{\mu} - 1,
\end{cases}
$$

(2.7)

$$
\int_{B(0,r)} |V|^2 \, dx = \int_{\mathbb{R}^N} |\mu|^2 \, dx - O(\epsilon^2 \sqrt{\mu - \mu}),
$$

(2.8)

$$
\int_{B(0,r)} \left(|\nabla V|^2 - \mu \frac{V^2}{|x|^2} \right) \, dx = \int_{\mathbb{R}^N} \left(|\nabla u|^2 - \mu \frac{|u|^2}{|x|^2} \right) \, dx
+ \begin{cases}
O(\epsilon^2 \ln \epsilon) & \text{if } \mu = \overline{\mu} - 1, \\
O(\epsilon^2 \sqrt{\mu - \mu}) & \text{if } \mu \neq \overline{\mu} - 1,
\end{cases}
$$

(2.9)

and for any $\xi \in \mathbb{R}^N \setminus \{0\}$,

$$
\int_{B(0,r)} \frac{|V(x)|^2}{|x + \xi|^2} \, dx = \begin{cases}
\epsilon^2 \int_{\mathbb{R}^N} |\mu|^2 \, dx + o(\epsilon^2) & \text{if } \mu < \overline{\mu} - 1, \\
\kappa^2\kappa_{\infty}(\mu)^2 \epsilon^2 \ln \epsilon + O(\epsilon^2) & \text{if } \mu = \overline{\mu} - 1, \\
C(N, \mu, \epsilon^2) e^{2\sqrt{\mu - \mu}} + o(\epsilon^2 \sqrt{\mu - \mu}) & \text{if } \mu > \overline{\mu} - 1.
\end{cases}
$$

(2.10)

Proof. The proofs of (2.7)–(2.9) are essentially similarly to Lemmas A.1 and A.2 in [8].

By using Lemma 2.3,

$$
\int_{B(0,r)} |V|^2 \, dx \leq \epsilon^{-(N-2)} \int_{|x| < r} |\mu \left(\frac{x}{\epsilon} \right) |^2 \, dx = \epsilon^2 \int_{|y| < \frac{r}{\epsilon}} |u(y)|^2 \, dy
$$

$$
\leq \kappa^2(\mu) \epsilon^2 \int_{|y| < \frac{r}{\epsilon}} |U^1(r)^2 \, dy
= C^2_{\mu}(N) \kappa^2(\mu) \epsilon^2 \int_{|y| < \frac{r}{\epsilon}} \frac{1}{|y| (\sqrt{\mu - \mu} + |y| (\sqrt{\mu + \mu} - \sqrt{\mu}))} N \, dy
$$

$$
= C^2_{\mu}(N) \kappa^2(\mu) \omega_N \epsilon \int_{0}^{\frac{r}{\epsilon}} \int_{t^{N-1}}^{t^N} (t^{\sqrt{\mu - \mu} - \sqrt{\mu}} + t^{\sqrt{\mu + \mu} - \sqrt{\mu}}) N \, dt
$$

$$
= C^2_{\mu}(N) \kappa^2(\mu) \omega_N \epsilon \int_{0}^{\frac{r}{\epsilon}} \int_{t^{N-1}}^{t^N} \frac{1}{t^{\sqrt{\mu - \mu} - \sqrt{\mu}} + t^{\sqrt{\mu + \mu} - \sqrt{\mu}})} N \, dt
$$

$$
\leq C^2_{\mu}(N) \kappa^2(\mu) \omega_N \epsilon \left(\int_{0}^{1} \frac{t^{N-1}}{t^{N-2}} \, dt + \int_{1}^{\frac{r}{\epsilon}} \frac{t^{N-1}}{t^{N-2} + t^{N-1} \sqrt{\mu}} \, dt \right)
$$

$$
\leq \begin{cases}
O(\epsilon^2) & \text{if } \mu < \overline{\mu} - 1, \\
O(\epsilon^2 \ln \epsilon) & \text{if } \mu = \overline{\mu} - 1, \\
O(\epsilon^2 \sqrt{\mu - \mu}) & \text{if } \mu > \overline{\mu} - 1,
\end{cases}
$$

(2.11)
where \(\omega_N \) is the surface measure of the unit sphere in \(\mathbb{R}^N \). So (2.7) is obtained.

Notice that

\[
\int_{|y| < \frac{r}{\varepsilon}} |V|^2 \, dx \leq \int_{|y| < \frac{r}{\varepsilon}} |u^\mu(y)|^2 \, dy = \int_{\mathbb{R}^N} |u^\mu(y)|^2 \, dy - \int_{|y| > \frac{r}{\varepsilon}} |u^\mu(y)|^2 \, dy,
\]

and

\[
\int_{|y| > \frac{r}{\varepsilon}} |u^\mu(y)|^2 \, dy \geq \frac{1}{n^2 \pi (u)} \int_{|y| > \frac{r}{\varepsilon}} |U^1_\mu(y)|^2 \, dy
\]

\[
= \frac{C^2_\mu (N)}{\kappa^2 (u)} \int_{|y| > \frac{r}{\varepsilon}} \frac{1}{(|y|/\sqrt{n}-\sqrt{n}-\mu)/\sqrt{n} + |y|/\sqrt{n}+\sqrt{n}+\mu)} \, |y|^N \, dy
\]

\[
= \frac{C^2_\mu (N)}{\kappa^2 (u)} \omega_N \int_\frac{r}{\varepsilon}^\infty \frac{t^{-N-1}}{(t/\sqrt{n}-\sqrt{n}-\mu)/\sqrt{n} + t/(\sqrt{n}+\sqrt{n}+\mu)} \, dt
\]

\[
\geq \frac{C^2_\mu (N)}{2N \kappa^2 (u)} \omega_N \int_\frac{r}{\varepsilon}^\infty t^{-1-2\sqrt{n}} \, dt
\]

\[
= O(\varepsilon^{2\sqrt{n}}). \quad (2.12)
\]

Then (2.8) follows.

Note that \(u^\mu \in D^{1,2}(\mathbb{R}^N) \) is a solution for problem (2.2), i.e.

\[-\Delta u^\mu - \mu \frac{u^\mu}{|x|^2} = |u^\mu|^2 - 2u^\mu \quad \text{in} \quad \mathbb{R}^N.\]

To prove (2.9), multiplying the above equation by \(\varphi^2(\varepsilon \cdot) u^\mu(\cdot) \) and integrating by parts, it holds

\[
\int_{|y| < \frac{r}{\varepsilon}} \varphi^2(\varepsilon y)|u^\mu(y)|^2 \, dy = \int_{|y| < \frac{r}{\varepsilon}} \left(\varphi^2(\varepsilon y) |\nabla u^\mu(y)|^2 - \mu \frac{\varphi^2(\varepsilon y)|u^\mu(y)|^2}{|y|^2} \right) \, dy
\]

\[+ \int_{|y| < \frac{r}{\varepsilon}} 2\varphi(\varepsilon y) \nabla(\varphi(\varepsilon y)) u^\mu(y) \nabla u^\mu(y) \, dy. \]

Hence

\[
\int_{B(0,r)} \left(|\nabla V|^2 - \mu \frac{V^2}{|x|^2} \right) \, dx = \int_{|y| < \frac{r}{\varepsilon}} \left(\varphi^2(\varepsilon y) |\nabla u^\mu(y)|^2 - \mu \frac{\varphi^2(\varepsilon y)|u^\mu(y)|^2}{|y|^2} \right) \, dy
\]

\[+ \int_{|y| < \frac{r}{\varepsilon}} 2\varphi(\varepsilon y) \nabla(\varphi(\varepsilon y)) u^\mu(y) \nabla u^\mu(y) \, dy
\]

\[+ \int_{|y| < \frac{r}{\varepsilon}} |\nabla(\varphi(\varepsilon y))|^2 |u^\mu(y)|^2 \, dy
\]

\[= \int_{\mathbb{R}^N} \left(|\nabla u^\mu|^2 - \mu \frac{|u^\mu|^2}{|x|^2} \right) \, dx - \int_{|y| > \frac{r}{\varepsilon}} |u^\mu(y)|^2 \, dy
\]

\[+ \int_{\frac{r}{\varepsilon} \leq |y| < \frac{r}{\varepsilon}} \varphi^2(\varepsilon y)|u^\mu(y)|^2 \, dy
\]

\[+ \int_{|y| < \frac{r}{\varepsilon}} |\nabla(\varphi(\varepsilon y))|^2 |u^\mu(y)|^2 \, dy. \]
Similarly to (2.12),
\[
\int_{|y| \geq \frac{r}{2}} |u^\mu(y)|^2 \, dy = O(\epsilon^{2 \sqrt{p - \mu}}),
\]
\[
\int_{\frac{r}{2} \leq |y| < \frac{r}{2}} \varphi^2(\epsilon y)|u^\mu(y)|^2 \, dy = O(\epsilon^{2 \sqrt{p - \mu}}).
\]
Hence (2.9) holds since
\[
\int_{|y| < \frac{r}{2}} |\nabla(\varphi(\epsilon y))|^2 |u^\mu(y)|^2 \, dy \leq C \epsilon^2 \int_{\frac{r}{2} \leq |y| < \frac{r}{2}} |u^\mu(y)|^2 \, dy
\]
\[
= \begin{cases} O(\epsilon^2 \ln \epsilon) & \text{if } \mu = \overline{p} - 1, \\ O(\epsilon^{2 \sqrt{p - \mu}}) & \text{if } \mu \neq \overline{p} - 1, \end{cases}
\]
where the last equality can be obtained similarly to (2.11).

Now we prove (2.10). As in [12],
\[
\int_{B(0,r)} \frac{|V(x)|^2}{|x + \xi|^2} \, dx = \frac{\epsilon^{-(N-2)}}{|\xi|^2} \int_{|x| < r} \left| u^\mu \left(\frac{x}{\epsilon} \right) \right|^2 \, dx + \epsilon^{-(N-2)}
\]
\[
\times \int_{|x| < r} \left(\frac{1}{|x + \xi|^2} - \frac{1}{|\xi|^2} \right) \left| u^\mu \left(\frac{x}{\epsilon} \right) \right|^2 \, dx
\]
\[
+ \epsilon^{-(N-2)} \int_{\frac{r}{2} < |x| < r} \left(\frac{\varphi^2 - 1}{|x + \xi|^2} \right) \left| u^\mu \left(\frac{x}{\epsilon} \right) \right|^2 \, dx
\]
\[:= A_1(\epsilon) + A_2(\epsilon) + A_3(\epsilon).\]

To continue we distinguish three cases: \(\mu < \overline{p} - 1, \mu = \overline{p} - 1 \) and \(\mu > \overline{p} - 1 \).

For \(\mu < \overline{p} - 1 \), by (2.5) we have that \(\int_{\mathbb{R}^N} |u^\mu|^2 \, dx < \infty \). Then as (3.14) in [12],
\[
A_1(\epsilon) = \frac{\epsilon^2}{|\xi|^2} \int_{\mathbb{R}^N} |u|^2 \, dx + o(\epsilon^2). \quad (2.13)
\]
Noticing (2.5), by using (3.15) and (3.17) in [12], we have
\[
|A_2(\epsilon)| \leq \epsilon^{-(N-2)} \kappa^2(u^\mu) \int_{|x| < r} \left(\frac{1}{|x + \xi|^2} - \frac{1}{|\xi|^2} \right) \left| U^1_{\mu} \left(\frac{x}{\epsilon} \right) \right|^2 \, dx = o(\epsilon^2), \quad (2.14)
\]
\[
|A_3(\epsilon)| \leq \epsilon^{-(N-2)} \kappa^2(u^\mu) \int_{\frac{r}{2} < |x| < r} \frac{|U^1_{\mu} \left(\frac{x}{\epsilon} \right)|^2}{|x + \xi|^2} \, dx = O(\epsilon^{2 \sqrt{p - \mu}}). \quad (2.15)
\]
for \(r > 0 \) small enough, where (2.15) holds for \(\mu < \overline{p} \). Then combining (2.13) with (2.14), (2.15), it gives
\[
\int_{B(0,r)} \frac{|V(x)|^2}{|x + \xi|^2} \, dx = \frac{\epsilon^2}{|\xi|^2} \int_{\mathbb{R}^N} |u|^2 \, dx + o(\epsilon^2) \quad \text{if } \mu < \overline{p} - 1.
\]

For \(\mu = \overline{p} - 1 \), by using (35) in [14],
\[
A_1(\epsilon) = \frac{\epsilon^2}{|\xi|^2} \int_{|y| < \frac{r}{2}} |u^\mu(y)|^2 \, dy = \frac{\epsilon^2}{|\xi|^2} (\kappa^2(u^\mu)) |\ln \epsilon| T
\]
\[+O(1) = \kappa^2_{\infty}(u^\mu) \frac{e^2 \ln \epsilon}{|\xi|^2} + O(\epsilon^2). \]
\hspace{2cm} (2.16)

By using (2.5), as (3.22) in [12],
\[|A_2(\epsilon)| = O(\epsilon^2). \]
\hspace{2cm} (2.17)

Then (2.16), (2.17) and (2.15) imply that
\[\int_{B(0,r)} \frac{|V(x)|^2}{|x + \xi|^2} \, dx = \kappa^2_{\infty}(u^\mu) \frac{e^2 \ln \epsilon}{|\xi|^2} + O(\epsilon^2) \quad \text{if } \mu = \overline{\mu} - 1. \]

For \(\mu > \overline{\mu} - 1 \), by using (2.5),
\[
\int_{B(0,r)} \frac{|V(x)|^2}{|x + \xi|^2} \, dx \leq e^{-(N-2)} \int_{|x| < \frac{|\xi|}{2}} \frac{|u^\mu \left(\frac{x}{\epsilon} \right)|^2}{|x + \xi|^2} \, dx \\
\leq \frac{4 \kappa^2(u^\mu) e^2}{|\xi|^2} \int_{|y| < \frac{|\xi|}{2}} |U^1_\mu(y)|^2 \, dy \quad \text{(require } r < \frac{|\xi|}{2}) \\
= \frac{4C^2(N) \kappa^2(u^\mu) \omega_N e^2}{|\xi|^2} \int_0^{\frac{|\xi|}{2}} \int_0^{t^{N-1}} \frac{\mu}{(\sqrt{\mu^2 + \mu^2} + t)^{N-2}} \, dt \\
+ \int_1^{\frac{|\xi|}{2}} \int_0^{t^{N-1}} \frac{\mu}{(\sqrt{\mu^2 + \mu^2} + t)^{N-2}} \, dt \\
\leq \frac{4C^2(N) \kappa^2(u^\mu) \omega_N e^2}{|\xi|^2} \left(\int_0^{1} \frac{t^{N-1}}{t^{N-2} + t^{N-2} - 2\sqrt{\mu^2 + \mu^2}} \, dt + \int_1^{t^{N-1}} \frac{t^{N-1}}{t^{N-2} + t^{N-2} - 2\sqrt{\mu^2 + \mu^2}} \, dt \right) \\
\leq \frac{4C^2(N) \kappa^2(u^\mu) \omega_N e^2}{|\xi|^2} \epsilon^2 \sqrt{\mu^2 - \mu} + o(\epsilon^2 \sqrt{\mu^2 - \mu}) \\
= \frac{C(N, \mu, u^\mu)}{|\xi|^2} \epsilon^2 \sqrt{\mu^2 - \mu} + o(\epsilon^2 \sqrt{\mu^2 - \mu}). \]
\hspace{2cm} (2.18)

On the other hand,
\[\int_{B(0,r)} \frac{|V(x)|^2}{|x + \xi|^2} \, dx \geq e^{-(N-2)} \int_{|x| < \frac{|\xi|}{2}} \frac{|u^\mu \left(\frac{x}{\epsilon} \right)|^2}{|x + \xi|^2} \, dx \\
\geq \frac{4 \kappa^2(u^\mu)}{|\xi|^2} \int_{|y| < \frac{|\xi|}{2}} |U^1_\mu(y)|^2 \, dy \quad \text{(require } r < \frac{|\xi|}{2}) \\
= \frac{C(N, \mu, u^\mu)}{|\xi|^2} \epsilon^2 \sqrt{\mu^2 - \mu} + o(\epsilon^2 \sqrt{\mu^2 - \mu}). \]
\hspace{2cm} (2.19)

Then (2.18) and (2.19) imply that
\[\int_{B(0,r)} \frac{|V(x)|^2}{|x + \xi|^2} \, dx = \frac{C(N, \mu, u^\mu)}{|\xi|^2} \epsilon^2 \sqrt{\mu^2 - \mu} + o(\epsilon^2 \sqrt{\mu^2 - \mu}) \quad \text{if } \mu > \overline{\mu} - 1. \]
3. Existence of one positive solution for $(\mathcal{P}^\infty_{\lambda_0,K})$

In this section, we show the existence of one positive solution for the problem $(\mathcal{P}^\infty_{\lambda_0,K})$.

Let $N \geq 4$ and $K(x)$ be $\mathbb{SO}(2) \times \mathbb{SO}(N-2)$-invariant on $\Omega_B(R)$ in this section. Denote $\mathcal{D}^{1,2}_{\text{circ}}(\mathbb{R}^N) := \{u(y,z) \in \mathcal{D}^{1,2}(\mathbb{R}^N) : u(y,z) = u(|y|,|z|)\}$, where $(y,z) \in \mathbb{R}^2 \times \mathbb{R}^{N-2}$. For $\mu_0 < \overline{\mu}$, define

$$S_{\text{circ}}(\mu_0) := \inf_{u \in \mathcal{D}^{1,2}_{\text{circ}}(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\mathbb{R}^N} |\nabla u|^2 dx - \mu_0 \int_{\mathbb{R}^N} \frac{u^2}{|x|^2} dx}{(\int_{\mathbb{R}^N} |u|^{2^*} dx)^{2/2^*}},$$

(3.1)

which is achieved in $\mathcal{D}^{1,2}_{\text{circ}}(\mathbb{R}^N)$ (see Lemma 6.1 in [14]). It is also easy to know that $S_{\text{circ}}(\mu_0)$ is independent of $\Omega_B(R) \subset \mathbb{R}^N$ in the sense that, for any $\Omega_B(R) \subset \mathbb{R}^N$,

$$S_{\text{circ}}(\mu_0) = \inf_{u \in (H^1_{\text{circ}}(\Omega_B(R)) \setminus \{0\})} \frac{\int_{\Omega_B(R)} |\nabla u|^2 dx - \mu_0 \int_{\Omega_B(R)} \frac{u^2}{|x|^2} dx}{(\int_{\Omega_B(R)} |u|^{2^*} dx)^{2/2^*}}. $$

(3.2)

An assumption on $K(x)$ is as follows.

$$(K_1) \text{ There exists } \alpha_1 > 0 \text{ such that } K(x) = K(0) + O(|x|^\alpha_1) \text{ as } x \to 0 \text{ and }$$

$$\begin{align*}
&\begin{cases}
\alpha_1 > 2 & \text{ if } \mu_0 < \overline{\mu} - 1, \\
\alpha_1 \geq 2 & \text{ if } \mu_0 = \overline{\mu} - 1, \\
\alpha_1 > 2\sqrt{\overline{\mu} - \mu_0} & \text{ if } \overline{\mu} > \mu_0 > \overline{\mu} - 1.
\end{cases}
\end{align*}$$

Set $t^+ = \max\{t,0\}$. We state the main result in this section.

Theorem 3.1. Let $N \geq 4$, $\mu_0^+ + \sum_{l=1}^m k\mu_l^+ < \overline{\mu}$ and (K_1) hold. For given $\lambda_0 \in \mathbb{R}$, there exists $\overline{\lambda} \geq 0$, such that if

$$\sum_{l=1}^m \frac{\mu_l^+}{\overline{\lambda}_l} > \overline{\lambda},$$

then the problem $(\mathcal{P}^\infty_{\lambda_0,K})$ admits a $\mathbb{SO}(2) \times \mathbb{SO}(N-2)$-invariant positive solution.

A lemma is crucial.

Lemma 3.2. Let $N \geq 4$, $\mu_0^+ + \sum_{l=1}^m k\mu_l^+ < \overline{\mu}$. Assume that $\{u_n\} \subset (H^1_{\text{circ}}(\Omega_B(R))$ is a Palais–Smale $(PS \text{ in short})$ sequence at level c for J_{circ} restricted to $(H^1_{\text{circ}}(\Omega_B(R))$, that is

$$J_{\text{circ}}(u_n) \to c, \quad J'_{\text{circ}}(u_n) \to 0 \quad \text{in the dual space } ((H^1_{\text{circ}}(\Omega_B(R)))^*.$$

If

$$c < \frac{1}{N} \frac{S_{\text{circ}}^\infty(\mu_0)}{K(0)^{\frac{N-2}{2}}},$$

then $\{u_n\}$ has a converging subsequence in $(H^1_{\text{circ}}(\Omega_B(R))$.

Proof. The proof is omitted since it is standard and similarly to Theorem 4.2 in [23].

Denote
\[
\mathcal{M}_{\text{circ}} := \left\{ u \in (H^1_0)_{\text{circ}}(\Omega_B(R)) : \int_{\Omega_B(R)} \left(|\nabla u|^2 - \mu_0 \frac{u^2}{|x|^2} \right) dx \right. \\
- \sum_{l=1}^{m} k\mu_l \int_{\Omega_B(R)} \left(\frac{1}{2\pi l} \int_{S_{r_l}} \frac{u^2(y)}{|x-y|^2} d\sigma(y) \right) dy \\
\left. = \lambda_0 \int_{\Omega_B(R)} u^2 dx + \int_{\Omega_B(R)} K(x)|u|^2^* dx \right\}
\]

Define
\[
\pi_{\text{circ}} : (H^1_0)_{\text{circ}}(\Omega_B(R)) \setminus \{0\} \to \mathcal{M}_{\text{circ}},
\]
\[
\pi_{\text{circ}}(u) = \frac{\int_{\Omega_B(R)} \left(|\nabla u|^2 - \mu_0 \frac{u^2}{|x|^2} - \lambda_0 u^2 \right) dx - \sum_{l=1}^{m} k\mu_l \int_{\Omega_B(R)} \left(\frac{1}{2\pi l} \int_{S_{r_l}} \frac{u^2(y)}{|x-y|^2} d\sigma(y) \right) dy}{\int_{\Omega_B(R)} K(x)|u|^2^* dx}
\]
for all \(u \in (H^1_0)_{\text{circ}}(\Omega_B(R)) \setminus \{0\} \). Then
\[
J_{\text{circ}}(\pi_{\text{circ}}(u)) = \frac{1}{N} \left(\int_{\Omega_B(R)} \left(|\nabla u|^2 - \mu_0 \frac{u^2}{|x|^2} - \lambda_0 u^2 \right) dx - \sum_{l=1}^{m} k\mu_l \int_{\Omega_B(R)} \left(\frac{1}{2\pi l} \int_{S_{r_l}} \frac{u^2(y)}{|x-y|^2} d\sigma(y) \right) dy \right)^{\frac{N-1}{N}},
\]
for all \(u \in (H^1_0)_{\text{circ}}(\Omega_B(R)) \setminus \{0\} \). Denote
\[
m_{\text{circ}} := \inf_{\mathcal{M}_{\text{circ}}} J_{\text{circ}}.
\]

Now we estimate \(m_{\text{circ}} \).

Proposition 3.3. Let \(N \geq 4, \mu_0^+ + \sum_{l=1}^{m} k\mu_l^+ < \overline{\mu} \) and \((\mathcal{K}_1)\) hold. For given \(\lambda_0 \in \mathbb{R} \), there exists \(\underline{\mathcal{L}} \geq 0 \), such that if
\[
\sum_{l=1}^{m} \frac{\mu_l}{r_l^2} > \underline{\mathcal{L}},
\]
then
\[
m_{\text{circ}} < \frac{1}{N} \frac{S_{\text{circ}}^N(\mu_0)}{K(0)^{\frac{N-2}{2}}}.
\]

Proof. Assume \(S_{\text{circ}}(\mu_0) \) is attained by some \(u^{\mu_0} \in D^{1,2}_{\text{circ}}(\mathbb{R}^N) \). For simplicity we assume that \(\int_{\mathbb{R}^N} |u^{\mu_0}|^2 \ dx = 1 \). Therefore the function \(v^{\mu_0} = S_{\text{circ}}(\mu_0)^{1/(2^*-2)}|u^{\mu_0}| \) is a nonnegative solution for (2.2). Take \(U_{\text{circ}}(x) = \varphi(x)|u^{\mu_0}(x)| \) with \(\varphi(x) \) satisfying (2.6). Then it follows
Combining the above two equalities and on the proof by the maximum principle.

Proof of Theorem 3.1. \(u \in M\),

\[
\int_{\Omega_B(R)} \left(\frac{1}{2\pi r_0} \int_{S_{r_0}} \frac{|U_{\text{circ}}(y)|^2}{|x - y|^2} d\sigma(x) \right) dy = \begin{cases} \\
\kappa_1 \int_{\mathbb{R}^N} |u|^2 dx + O(\varepsilon^2) & \text{if } \mu_0 < \bar{\mu} - 1, \\
\kappa_2 \frac{|\ln \varepsilon|}{r_0^2} + O(\varepsilon^2) & \text{if } \mu_0 = \bar{\mu} - 1, \\
\kappa_2 \frac{|\ln \varepsilon|}{r_0^2} + O(\varepsilon^2) & \text{if } \mu_0 > \bar{\mu} - 1.
\end{cases}
\]

On the other hand, (K1) and (2.8) imply that

\[
\int_{\Omega_B(R)} K(x)|U_{\text{circ}}|^2 dx = K(0) \int_{\Omega_B(R)} |U_{\text{circ}}|^2 dx + \int_{\Omega_B(R)} (K(x) - K(0))|U_{\text{circ}}|^2 dx = K(0) + O(\varepsilon^2) + O(\varepsilon^3).
\]

Combining the above two equalities and Lemma 2.4, for \(\mu_0 < \bar{\mu} - 1\), we have

\[
\begin{aligned}
J_{\text{circ}}(\tau_{\text{circ}}(U_{\text{circ}})) &= \frac{1}{N} \left(\int_{\Omega_B(R)} \left(\nabla U_{\text{circ}} |^2 - \mu_0 \frac{|U_{\text{circ}}|^2}{|x|^2} - \lambda_0 U_{\text{circ}}^2 \right) dx - \sum_{i=1}^m \mu_i \int_{\Omega_B(R)} \left(\frac{U_{\text{circ}}^2}{|x|^2} - 2 \int_{S_{r_0}} \frac{U_{\text{circ}}(y)}{|x - y|^2} d\sigma(x) \right) dy \right) \\
&= \frac{1}{N} \left(\int_{\Omega_B(R)} K(x)|U_{\text{circ}}|^2 dx \right) + O(\varepsilon^2) + O(\varepsilon^3).
\end{aligned}
\]

Hence there exists \(T \geq 0\), such that if

\[
\sum_{i=1}^m \frac{\mu_i}{r_i^2} > T,
\]

then

\[
J_{\text{circ}}(\tau_{\text{circ}}(U_{\text{circ}})) < \frac{1}{N} \frac{S_{\text{circ}}^N(\mu_0)}{K(0) \frac{1}{K(0)}}.
\]

Hence \(m_{\text{circ}} < \frac{1}{N} \frac{S_{\text{circ}}^N(\mu_0)}{K(0) \frac{1}{K(0)}}\).

When \(\mu_0 = \bar{\mu} - 1\) and \(\mu_0 > \bar{\mu} - 1\), the proofs are similar. \(\square\)

Proof of Theorem 3.1. Let \(\{u_n\} \subset (H^1_0)^{\text{circ}}(\Omega_B(R))\) be a minimizing sequence for \(J_{\text{circ}}\) on \(M_{\text{circ}}\). By the Ekeland variational principle [24], we can assume \(\{u_n\}\) is a PS sequence.

Proposition 3.3 gives \(m_{\text{circ}} < \frac{1}{N} \frac{S_{\text{circ}}^N(\mu_0)}{K(0) \frac{1}{K(0)}}\). Hence Lemma 3.2 implies that there exists \(u \in M_{\text{circ}}\), such that \(J_{\text{circ}}(u) = J_{\text{circ}}(|u|) = m_{\text{circ}}\). Therefore we end the proof by the maximum principle. \(\square\)
4. Existence of one positive solution for \((\mathcal{P}_{\lambda_0, K})\)

In this section, we show the existence of one positive solution for the problem \((\mathcal{P}_{\lambda_0, K})\).

Denote \(K_M := \max_{x \in \Omega} K(x)\). Let \(N \geq 4\) in this section and assume that \(K(x), \Omega\) are \(\mathbb{Z}_k \times \mathbb{S}_0(N-2)\)-invariant in the sequel. Denote \(\mathcal{D}^{1,2}_k(\mathbb{R}^N) := \{u(y, z) \in \mathcal{D}^{1,2}(\mathbb{R}^N) : u(e^{2 \pi \sqrt{-1} / k} y, z) = u(y, |z|)\}\), where \((y, z) \in \mathbb{R}^2 \times \mathbb{R}^{N-2}\).

As in [14], for any \(\mu < \overline{\mu}\), define

\[
S_k(\mu) := \min_{u \in \mathcal{D}^{1,2}_k(\mathbb{R}^N) \setminus \{0\}} \left(\frac{\int_{\mathbb{R}^N} |\nabla u|^2 - \mu \frac{u^2}{|z|^2} \, dx}{\left(\int_{\mathbb{R}^N} |u|^2 \, dx \right)^{2/\mu}} \right). \tag{4.1}
\]

It is easy to see that \(S_k(\mu)\) is independent of the \(\mathbb{Z}_k \times \mathbb{S}_0(N-2)\)-invariant domain \(\Omega \subset \mathbb{R}^N\) in the sense that, for any \(\mathbb{Z}_k \times \mathbb{S}_0(N-2)\)-invariant domain \(\Omega\),

\[
S_k(\mu) = \inf_{u \in (H^{1,2}_0(\Omega) \setminus \{0\})} \left(\frac{\int_{\Omega} |\nabla u|^2 - \mu \frac{u^2}{|z|^2} \, dx}{\left(\int_{\Omega} |u|^2 \, dx \right)^{2/\mu}} \right). \tag{4.2}
\]

Two assumptions are needed.

\((K_2)\). There exist \(x_0 \in \Omega \setminus \{0, a_i, i = 1, \ldots, k, l = 1, \ldots, m\}\) and \(\alpha_2 > 2\) such that \(K(x) = K_M + O(|x-x_0|^{\alpha_2})\) as \(x \to x_0\).

Denote \(x_0 := (x_0^{(2)}, x_0^{(N-2)}) \in \mathbb{R}^2 \times \mathbb{R}^{N-2} \cap \Omega\). Since \(K(x)\) is \(\mathbb{Z}_k \times \mathbb{S}_0(N-2)\)-invariant, then for any \(x_{0,j} = (e^{2\pi (j-1) \sqrt{-1} / k} x_0^{(2)}, x_0^{(N-2)}), j = 1, 2, \ldots, k\), there holds \(K(x) = K_M + O(|x-x_{0,j}|^{\alpha_2})\) as \(x \to x_{0,j}\).

\((K_3)\). There exists \(\alpha_3 > 0\) such that \(K(x) = K(a_i^L) + O(|x-a_i^L|^{\alpha_3})\) as \(x \to a_i^L, i = 1, \ldots, k\), with

\[
\begin{cases}
\alpha_3 > 2 & \text{if } \mu_L < \overline{\mu} - 1, \\
\alpha_3 \geq 2 & \text{if } \mu_L = \overline{\mu} - 1, \\
\alpha_3 > 2\sqrt{\overline{\mu} - \mu_L} & \text{if } \mu_L > \overline{\mu} - 1,
\end{cases}
\]

where \(L(1 \leq L \leq m)\) is a positive natural number such that \(\mu_L < \overline{\mu}\) and

\[
\frac{S_{\frac{N}{2}}^N(\mu_L)}{K(a_i^L)^{\frac{N}{2}}} = \min \left\{ \frac{S_{\frac{N}{2}}^N(\mu)}{K(a_i^L)^{\frac{N}{2}}}, l = 1, \ldots, m \right\}. \tag{4.3}
\]

The main result in this section is as follows.

Theorem 4.1. Let \(N \geq 4, \mu_0^+ + \sum_{i=1}^m k \mu_i^+ < \overline{\mu}\).

(i). When

\[
\min \left\{ k \frac{S_{\frac{N}{2}}^N(\mu)}{K(a_i^L)^{\frac{N}{2}}}, k \frac{S_{\frac{N}{2}}^N(\mu_L)}{K(a_i^L)^{\frac{N}{2}}}, \frac{S_{\frac{N}{2}}^N(\mu_0)}{K(0)^{\frac{N}{2}}} \right\} = k \frac{S_{\frac{N}{2}}^N(\mu_0)}{K_M^{\frac{N}{2}}},
\]

assume \((K_2)\) holds, then for given \(\lambda_0 \in \mathbb{R}\), there exists \(\overline{L} \geq 0\), such that if \(\sum_{i=1}^m \sum_{j=1}^k \frac{\mu_i}{|a_i^{(L)} - x_0|^2} > \overline{L}\), the problem \((\mathcal{P}_{\lambda_0, K})\) admits a \(\mathbb{Z}_k \times \mathbb{S}_0(N-2)\)-invariant positive solution.
(ii). When
\[
\min \left\{ k \frac{S_N^M}{K_M^{\frac{N-2}{2}}} , k \frac{S_N^M (\mu_L)}{K(a_L^I)^{\frac{N-2}{2}}} , \frac{S_K^N (\mu_0)}{K(0)^{\frac{N-2}{2}}} \right\} = k \frac{S_N^M (\mu_L)}{K(a_L^I)^{\frac{N-2}{2}}},
\]
assume \((K_4)\) holds, then for given \(\lambda_0 \in \mathbb{R}\), there exists \(\bar{L} \geq 0\), such that if \(\sum_{l=1, l \neq L}^m \sum_{j=1}^k \frac{1}{|a_l^I-a_j^I|^2} + \sum_{l=1, j \neq 1}^k \frac{\mu_l}{|a_l^I-a_j^I|^2} > \bar{L}\), the problem \((\mathcal{P}_{\lambda_0,K})\) admits a \(\mathbb{Z}_k \times \mathbb{O}(N-2)\)-invariant positive solution.

(iii). For \(k\) large enough, assume \((K_1)\) holds, then for given \(\lambda_0 \in \mathbb{R}\), there exists \(\bar{L} \geq 0\), such that if \(\sum_{l=1}^m \frac{k\mu_l}{r_l^2} > \bar{L}\) with \(r_l = |a_l^I| = |a_2^I| = \cdots = |a_k^I|\), the problem \((\mathcal{P}_{\lambda_0,K})\) admits a \(\mathbb{Z}_k \times \mathbb{O}(N-2)\)-invariant positive solution.

The following lemma is important.

Lemma 4.2. Let \(N \geq 4, \mu_0^+ + \sum_{l=1}^M k\mu_l^+ < \bar{\mu}\). Assume that \(\{u_n\} \subset (H^1_0)^k(\Omega)\) is a PS sequence at level \(c\) for \(J_k\) restricted to \((H^1_0)^k(\Omega)\), that is
\[
J_k(u_n) \to c, \quad J_k'(u_n) \to 0 \quad \text{in the dual space } ((H^1_0)^k(\Omega))^*,
\]
If
\[
c < \bar{c}(\mu_0, \mu_L) := \frac{1}{N} \min \left\{ k \frac{S_N^M}{K_M^{\frac{N-2}{2}}} , k \frac{S_N^M (\mu_L)}{K(a_L^I)^{\frac{N-2}{2}}} , \frac{S_K^N (\mu_0)}{K(0)^{\frac{N-2}{2}}} \right\},
\]
then \(\{u_n\}\) has a converging subsequence in \((H^1_0)^k(\Omega)\).

Proof. We omit the proof here since it is standard and similarly to Theorem 4.1 in [23].

Denote
\[
\mathcal{N}_k(\mu_0, \mu_L, \lambda_0) := \left\{ u \in (H^1_0)^k(\Omega) : \int_{\Omega} \left(|\nabla u|^2 - \mu_0 \frac{u^2}{|x|^2} \right) dx
- \sum_{l=1}^m \sum_{i=1}^k \mu_l \int_{\Omega} \frac{u^2}{|x-a_l^I|^2} dx \right\}.
\]
Define
\[
\pi_k : (H^1_0)^k(\Omega) \setminus \{0\} \to \mathcal{N}_k(\mu_0, \mu_L, \lambda_0),
\]
\[
\pi_k(u) = \left(\frac{\int_{\Omega} \left(|\nabla u|^2 - \mu_0 \frac{u^2}{|x|^2} - \lambda_0 u^2 \right) dx - \sum_{l=1}^m \sum_{i=1}^k \mu_l \int_{\Omega} \frac{u^2}{|x-a_l^I|^2} dx}{\int_{\Omega} K(x)|u|^2 dx} \right)^{\frac{N-2}{2}} u.
\]
Then
\[
J_k(\pi_k(u)) = \frac{1}{N} \left(\frac{\int_{\Omega} \left(|\nabla u|^2 - \mu_0 \frac{u^2}{|x|^2} - \lambda_0 u^2 \right) dx - \sum_{l=1}^m \sum_{i=1}^k \mu_l \int_{\Omega} \frac{u^2}{|x-a_l^I|^2} dx}{\left(\int_{\Omega} K(x)|u|^2 dx \right)^{\frac{N}{2}}} \right).
\]
for all $u \in (H^1_0)^k(\Omega) \setminus \{0\}$. Denote
\[
 m_k := \inf_{N_k(\mu_0, \mu_1, \lambda_0)} J_k.
\]

Proposition 4.3. Let $N \geq 4, \mu_0^+ + \sum_{i=1}^m k \mu_i^+ < \overline{\mu}$.

(I). If the assumptions in (i) of Theorem 4.1 hold, then for given $\lambda_0 \in \mathbb{R}$, there exists $\tilde{L} \geq 0$, such that if \(\sum_{l=1}^m \sum_{j=1}^k \frac{\mu_i}{|a_i^l - x_{0,j}|^2} > \tilde{L} \), there holds
\[
m_k < k \frac{S_N^N}{K_M^{N/2}}.
\]

(II). If the assumptions in (ii) of Theorem 4.1 hold, then for given $\lambda_0 \in \mathbb{R}$, there exists $\tilde{L} \geq 0$, such that if \(\sum_{l=1, l \neq L}^m \sum_{j=1}^k \frac{\mu_i}{|a_i^l - a_j^l|^2} + \sum_{j=1, j \neq L}^k \frac{\mu_j}{|a_i^l - a_j^l|^2} > \tilde{L} \), there holds
\[
m_k < k \frac{S_N^N(\mu_L)}{K(a_i^L)^{N/2}}.
\]

(III). If the assumptions in (iii) of Theorem 4.1 hold, then for given $\lambda_0 \in \mathbb{R}$, there exists $\tilde{L} \geq 0$, such that if \(\sum_{l=1}^m k \frac{\mu_l}{r^l} > \tilde{L} \), there holds
\[
m_k < \frac{1}{N} \frac{S_N^N(\mu_0)}{K(0)^{N/2}}.
\]

Proof. (I) For x_0 given in (K2), take $U(x) = \sum_{j=1}^k \psi(x) |U_0^\epsilon(x - x_{0,j})|$ with $\psi(x)$ satisfying
\[
0 \leq \psi \leq 1, \quad \psi = 1 \text{ if } x \in \bigcup_{j=1}^k B \left(x_{0,j}, \frac{r}{2} \right), \quad \psi = 0 \text{ if } x \notin \bigcup_{j=1}^k B(x_{0,j}, r),
\]
\[
|\nabla \psi| \leq \frac{4}{r},
\]
where $r > 0$ small enough, $x_{0,j} = (e^{2\pi j - 1/k} x_0^{(1)}, x_0^{(2)}, \ldots, x_0^{(N-2)})$, $j = 1, 2, \ldots, k$.

Then (2.10) gives
\[
\int_{\Omega} \frac{|U(x)|^2}{|x - a_i^l|^2} \, dx = \sum_{j=1}^k \frac{\epsilon^2}{|a_i^l - x_{0,j}|^2} \int_{\mathbb{R}^N} |U_0^\epsilon|^2 \, dx + o(\epsilon^2).
\]

On the other hand, the condition (K2) and (2.8) imply that
\[
\int_{\Omega} \nabla(K(x) |U|^2) \, dx = K_M k S_N^N + O(\epsilon^N) + O(\epsilon^{\alpha_2}).
\]

By summing the above two equalities and Lemma 2.4, we have
\[
J_k(\pi_k(U)) = \frac{1}{N} \left(f_{\Omega} \left(\frac{1}{|x - a_i^l|^2} - \mu_i |U|^2 \right) \, dx - \sum_{i=1}^m \sum_{j=1}^k \mu_i f_{\Omega} \left(\frac{|U|^2}{|x - a_i^l|^2} \right) \, dx \right)^N.
\]
Therefore there exists $\bar{L} \geq 0$, such that if $\sum_{l=1}^{m} \sum_{j=1}^{k} \frac{\mu_{l}}{|a_{l} - x_{0,j}|^{2}} > \bar{L}$, then

$$J_{k}(\pi_{k}(U)) < \frac{1}{N} k \frac{S^{N}}{K_{M}^{2}}.$$

Hence $m_{k} < \frac{1}{N} k \frac{S^{N}}{K_{M}^{2}}$.

(II) It is easy to see that $\mu_{L} > 0$ in this case since $S \leq S(\mu_{L})$ if $\mu_{L} \leq 0$.

Take $U_{k}(x) = \sum_{j=1}^{k} \varphi(x)|U_{\mu_{L}}^{e}(x - a_{j}^{L})|$ with $\varphi(x)$ satisfying

$$0 \leq \varphi \leq 1, \quad \varphi = 1 \quad \text{if } x \in \bigcup_{j=1}^{k} B\left(a_{j}^{L}, \frac{r}{2}\right), \quad \varphi = 0 \quad \text{if } x \notin \bigcup_{i=1}^{k} B(a_{j}^{L}, r),$$

$$|\nabla \varphi| \leq \frac{4}{r}$$

with $r > 0$ small enough. Then as in Lemma 6.2 in [13], by (2.10), for some positive constants $\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}$, it follows

$$\int_{\Omega} \frac{|U_{k}(x)|^{2}}{|x - a_{1}^{L}|^{2}} dx = \int_{\mathbb{R}^{N}} \frac{|U_{\mu_{L}}^{e}(x)|^{2}}{|x|^{2}} dx + O(\epsilon^{2})$$

and

$$\int_{\Omega} \frac{|U_{k}(x)|^{2}}{|x - a_{1}^{L}|^{2}} dx = \int_{\mathbb{R}^{N}} \frac{|U_{\mu_{L}}^{e}(x)|^{2}}{|x|^{2}} dx + O(\epsilon^{N-2})$$

By using Lemma 2.4, for $\mu_{L} < \bar{\mu} - 1$,

$$\int_{\Omega} \left(\nabla U_{k}^{2} - \mu_{0} \frac{U_{k}^{2}}{|x|^{2}} - \lambda_{0} U_{k}^{2}\right) dx - \sum_{l=1}^{m} \sum_{i=1}^{k} \mu_{l} \int_{\Omega} \frac{U_{k}^{2}}{|x - a_{l}^{L}|^{2}} dx$$
= kS^N_\mu L + O(\epsilon^2) \\
- \epsilon^2 k \int_{\mathbb{R}^N} |U_0|^2 dx \left(\sum_{l=1, l \neq L}^m \sum_{j=1}^k \frac{\mu_l}{|a_l^j - a_j^L|^2} + \sum_{j=1, j \neq 1}^k \frac{\mu_L}{|a_1^j - a_j^L|^2} + o(1) \right) \\
+ O(\epsilon^{N-2}) \\
= kS^N_\mu L - \epsilon^2 k \int_{\mathbb{R}^N} |U_0|^2 dx \left(\sum_{l=1, l \neq L}^m \sum_{j=1}^k \frac{\mu_l}{|a_l^j - a_j^L|^2} \\
+ \sum_{j=1, j \neq 1}^k \frac{\mu_L}{|a_1^j - a_j^L|^2} + o(1) \right) + O(\epsilon^2).

On the other hand, the condition \(K_3 \) and (2.8) imply that

\[
\int_{\Omega} K(x)|U_k|^2 dx = K(a_k^L)kS^N_\mu L + O(\epsilon^2|\mu - \mu_L|).
\]

Hence there exists \(\tilde{L} \geq 0 \), such that if \(\sum_{l=1, l \neq L}^m \sum_{j=1}^k \frac{\mu_l}{|a_l^j - a_j^L|^2} + \sum_{j=1, j \neq 1}^k \frac{\mu_L}{|a_1^j - a_j^L|^2} > \tilde{L} \), then

\[
J_k(\pi_k(U_k)) = \frac{1}{N} \left(\int_\Omega \left(\nabla U_0|^2 - \mu_0 \frac{U_0^2}{|x-a_0^L|^2} - \lambda_0 U_0^2 \right) dx - \sum_{l=1}^m \sum_{j=1}^k \mu_l \int_\Omega \frac{U_0^2}{|x-a_l^j|^2} dx \right) \frac{S^N_\mu L}{(f_\Omega K(x)|U_k|^2 dx)^{\frac{N}{N-2}}}
\]

\[
= \frac{1}{N} \left(kS^N_\mu L - \epsilon^2 k \int_{\mathbb{R}^N} |U_0|^2 dx \left(\sum_{l=1, l \neq L}^m \sum_{j=1}^k \frac{\mu_l}{|a_l^j - a_j^L|^2} + \sum_{j=1, j \neq 1}^k \frac{\mu_L}{|a_1^j - a_j^L|^2} + o(1) \right) + O(\epsilon^2) \right) \frac{S^N_\mu L}{(K(a_k^L)kS^N_\mu L + O(\epsilon^2|\mu - \mu_L|))^{\frac{N}{N-2}}}
\]

\[
< \frac{1}{N} \frac{S^N_\mu L}{K(a_k^L)^{\frac{N}{N-2}}}
\]

which gives \(m_k < \frac{1}{N} \frac{S^N_\mu L}{K(a_k^L)^{\frac{N}{N-2}}} \).

When \(\mu_L = \bar{\mu} - 1 \) and \(\mu_L > \bar{\mu} - 1 \), the proofs are similar.

(III) For \(k \) large enough, we have

\[
\min \left\{ k \frac{S^N_\mu L}{K(a_k^L)^{\frac{N}{N-2}}}, k \frac{S^N_\mu L}{K(a_k^L)^{\frac{N}{N-2}}}, \frac{S^N_{\mu_0}}{K(0)^{\frac{N}{N-2}}} \right\} = \frac{S^N_{\mu_0}}{K(0)^{\frac{N}{N-2}}}.
\]

Take \(U_{\circ} = \varphi(x)|U_{\circ}| \) with \(\varphi(x) \) satisfying (2.6) and argue as in Proposition 3.3, for \(\mu_0 < \bar{\mu} - 1 \),

\[
J_k(\pi_k(U_{\circ})) = \frac{1}{N} \left(\int_\Omega \left(\nabla U_{\circ}^2 - \mu_0 \frac{U_{\circ}^2}{|x-a_0^L|^2} - \lambda_0 U_{\circ}^2 \right) dx - \sum_{l=1}^m \sum_{j=1}^k \mu_l \int_\Omega \frac{U_{\circ}^2}{|x-a_l^j|^2} dx \right) \frac{S^N_{\mu_0}}{(f_\Omega K(x)|U_{\circ}|^2 dx)^{\frac{N}{N-2}}}
\]
On the other hand, Theorem 7.3 in [14] indicates \(\lim_{k \to +\infty} S_k(\mu_0) = S_{\text{circ}}(\mu_0)\). Then if \(k\) large enough,

\[
m_k < \frac{1}{N} \frac{S_N^N(\mu_0)}{K(0)^{\frac{N-2}{2}}}.\]

When \(\mu_0 = \bar{\mu} - 1\) and \(\mu_0 > \bar{\mu} - 1\), the proofs are similar. \(\square\)

Proof of Theorem 4.1. Let \(\{u_n\} \subset (H_0^1(\Omega))^k\) be a minimizing sequence for \(J_k\) on \(\mathcal{N}_k(\mu_0, \mu_1, \lambda_0)\). Then by using Proposition 4.3 and Lemma 4.2, the results can be obtained as in the proof of Theorem 3.1. \(\square\)

5. Existence of multiple positive solutions for \((\mathcal{P}_{\lambda_0, K})\)

This section is devoted to the multiplicity of positive solutions for the problem \((\mathcal{P}_{\lambda_0, K})\). The results here consist of two parts. We state them as follows respectively.

We always assume \(N \geq 5\) and \(3 \leq k < \left(\frac{K(0)}{K(\bar{\mu})}\right)^{\frac{N-2}{2}}\) in this section.

5.1. Part I

Denote \(\mathcal{C}(K) = \{b \in \Omega | K(b) = \max_{x \in \Omega} K(x)\}\). We state some assumptions first.

\((K_1)\) \(K(x) \in \mathcal{C}(\bar{\Omega}), K_M = \max_{x \in \Omega} K(x) > \max\{K(0), K(a_i^1), \ i = 1, \ldots, k, \ l = 1, \ldots, m\}\).

\((K_5)\) The set \(\mathcal{C}(K)\) is finite and \(b \in \Omega \cap \mathbb{R}^2 \times \{0\}\) for every \(b \in \mathcal{C}(K)\), say \(\mathcal{C}(K) = \{b_{i,s}, 1 \leq i \leq k, 1 \leq s \leq \frac{1}{K} \text{Card}(\mathcal{C}(K))\}\), where \(b_{i,s} = (b_{i,s}^{(2)}, 0) = (e^{2\pi(i-1)/k}b_{i,s}^{(1)}, 0) \in \mathbb{R}^2 \times \{0\}\).

\((K_6)\) There exists \(\alpha_1 > 2\) such that if \(b_{i,s} \in \mathcal{C}(K)\), then \(K(x) = K(b_{i,s}) + O(|x - b_{i,s}|^{\alpha_1})\) as \(x \to b_{i,s}\).

\((H)\) The first eigenvalue of operator \(-\Delta - \mu_0 \frac{1}{|x|^2} - \sum_{l=1}^{m} \sum_{i=1}^{k} \mu_l \frac{1}{|x-a_l|^2}\) is positive, that is, there exists \(\lambda_0' > 0\) such that

\[
\int_{\Omega} \left(\frac{\nabla u^2}{|x|^2} - \mu_0 \frac{u^2}{|x|^2}\right) \, dx - \sum_{l=1}^{m} \sum_{i=1}^{k} \mu_l \int_{\Omega} \frac{u^2}{|x-a_l|^2} \, dx \geq \lambda_0' \int_{\Omega} u^2 \, dx, \quad \forall u \in H_0^1(\Omega).
\]

Let \(L\) be the positive natural number appeared in (4.3).
Theorem 5.1. Let $N \geq 5, \mu_0^+ + \sum_{l=1}^{m} k \mu_l^+ < \bar{\mu}$. If $(\mathcal{K}_4), (\mathcal{K}_5), (\mathcal{K}_6), (\mathcal{H})$ hold and for every $1 \leq s \leq \frac{1}{k} \text{Card}(\mathcal{C}(K))$,
\[
\sum_{l=1}^{m} \sum_{j=1}^{k} \frac{\mu_l}{|a_l^j - b_{l,j,s}|^2} > 0,
\]
then there exist $\epsilon_{\mu_0} > 0, \epsilon_{\mu_l} > 0 (l = 1, \ldots, m), \epsilon_{\lambda_0} > 0, \text{such that for all } 0 < \mu_0 < \epsilon_{\mu_0}, 0 \leq \mu_L < \epsilon_{\mu_L}, |\mu_l| < \epsilon_{\mu_l} (l = 1, \ldots, m, l \neq L), 0 \leq \lambda_0 < \epsilon_{\lambda_0}$, the problem $(\mathcal{P}_{\lambda_0,K})$ admits a positive solution which is $\mathbb{Z}_k \times \text{SO}(N-2)$-invariant.

To prove the above theorem, we follow the arguments of [18].

By using Lemma 4.2, we have immediately the following lemma.

Lemma 5.2. If $\mu_0^+ + \sum_{l=1}^{m} k \mu_l^+ < \bar{\mu}$ and (\mathcal{K}_4) hold, then there exist $\epsilon_{\mu_0}^0 > 0, \epsilon_{\mu_L}^0 > 0$ such that
\[
\frac{k}{N^2} \leq \min \{ \frac{(1 - \frac{m}{N}) N - 1}{K(a_L^i)^{\frac{N}{M}}}, \frac{(1 - \frac{m}{N}) N - 1}{K(0)^{\frac{N}{M}}} \}
\]
and
\[
\bar{c}(\mu_0, \mu_L) = \bar{c} := \frac{1}{N} \frac{S^N}{k \frac{N}{M}}
\]
for all $0 < \mu_0 \leq \epsilon_{\mu_0}^0, 0 \leq \mu_L \leq \epsilon_{\mu_L}^0$.

Choose $r_0 > 0$ small enough such that
\[
B(b_{i,s}, r_0) \cap B(b_{j,t}, r_0) = \emptyset \text{ for all } i \neq j \text{ or } s \neq t, 1 \leq i, j \leq k, 1 \leq s, t \leq \frac{1}{k} \text{Card}(\mathcal{C}(K)),
\]
and denote, for any $1 \leq s \leq \frac{1}{k} \text{Card}(\mathcal{C}(K))$,
\[
T^s(u) := \frac{\int_{\Omega} \psi^s(x)|\nabla u|^2 dx}{\int_{\Omega} |\nabla u|^2 dx}, \quad \psi^s(x) = \min \{1, |x - b_{i,s}|, i = 1, \ldots, k\}.
\]
As in [18], if $u \neq 0$ and $T^s(u) \leq \delta$, then
\[
\int_{\Omega} \frac{r_0 \int_{\Omega \setminus \bigcup_{i=1}^{k} B(b_{i,s}, r_0)} |\nabla u|^2 dx}{3} \leq \int_{\Omega} |\nabla u|^2 dx.
\]
Therefore we obtain immediately the following lemma.

Lemma 5.3. If $u \in H_0^1(\Omega)$ such that $T^s(u) \leq \delta$, then
\[
\int_{\Omega} |\nabla u|^2 dx \geq 3 \int_{\Omega \setminus \bigcup_{i=1}^{k} B(b_{i,s}, r_0)} |\nabla u|^2 dx.
\]

Corollary 5.4. If $u \in H_0^1(\Omega), u \neq 0$ such that $T^s(u) \leq \delta, T^t(u) \leq \delta$, then $s = t$.

It is easy to prove that if (\mathcal{H}) holds and $0 \leq \lambda_0 < \lambda_0', \mu_0^+ + \sum_{l=1}^{m} k \mu_l^+ < \bar{\mu}$, then there exists $c > 0$ such that
\[
||u||_{H_0^1(\Omega)} \geq c, \quad \text{for any } u \in N_k(\mu_0, \mu_l, \lambda_0).
\]
Definition 5.5. For any \(1 \leq i \leq k, 1 \leq s \leq \frac{1}{k} \text{Card}(\mathcal{C}(K))\), consider the set
\[
M^s(\mu_0, \mu_1, \lambda_0) := \{ u \in \mathcal{N}_k(\mu_0, \mu_1, \lambda_0) : T^s(u) < \delta \}
\]
and its boundary
\[
\Gamma^s(\mu_0, \mu_1, \lambda_0) := \{ u \in \mathcal{N}_k(\mu_0, \mu_1, \lambda_0) : T^s(u) = \delta \}.
\]
Define
\[
m^s := \inf \{ J_k : u \in M^s(\mu_0, \mu_1, \lambda_0) \}, \quad \eta^s := \inf \{ J_k : u \in \Gamma^s(\mu_0, \mu_1, \lambda_0) \}.
\]

Lemma 5.6. Let \(N \geq 5, \mu_0^1 + \sum_{i=1}^{m} k \mu_i^1 < \bar{\rho}\). If \((K_4), (K_5), (K_6)\) hold and
\[
\sum_{i=1}^{m} \sum_{j=1}^{k} \frac{\mu_i}{|a_j - b_{j,s}|^2} > 0, \quad 1 \leq s \leq \frac{1}{k} \text{Card}(\mathcal{C}(K)),
\]
then \(M^s(\mu_0, \mu_1, \lambda_0) \neq \emptyset\) and there exist \(\epsilon_0 > 0, \epsilon_0 > 0\) such that
\[
m^s < \bar{\epsilon} \quad \text{for all} \quad 0 < \mu_0 \leq \epsilon_0^1, 0 \leq \lambda_0 \leq \epsilon_0^0.
\]

Proof. Take \(V^s(x) = \sum_{j=1}^{k} \varphi(x)|U^s_0(x - b_{j,s})| \in (H^1_0)^k(\Omega)\) with \(\varphi(x)\), a radial function, satisfying
\[
0 \leq \varphi \leq 1, \quad \varphi = 1 \quad \text{if} \quad x \in \bigcup_{j=1}^{k} B \left(b_{j,s}, \frac{r}{2} \right), \quad \varphi = 0 \quad \text{if} \quad x \notin \bigcup_{j=1}^{k} B \left(b_{j,s}, r \right),
\]
\[
|\nabla \varphi| \leq \frac{4}{r},
\]
where \(r > 0\) small enough.

It is obvious that
\[
\pi_k(V^s) = \left(\frac{\int_{\Omega} \left(|\nabla V^s|^2 - \mu_0 |V^s|^2 - \lambda_0 |V^s|^2 \right) dx}{\int_{\Omega} K(x) |V^s|^2 dx} - \sum_{i=1}^{m} \sum_{j=1}^{k} \mu_i \int_{\Omega} \frac{|V^s|^2}{|x - a_j|^2} dx \right)^{\frac{N-2}{2}} V^s
\]
\[
:= t_s^s V^s \in \mathcal{N}_k(\mu_0, \mu_1, \lambda_0).
\]

Then
\[
T^s(\pi_k(V^s)) = \frac{\int_{\Omega} \psi^s(x)|\nabla \pi_k(V^s)|^2 dx}{\int_{\Omega} |\nabla \pi_k(V^s)|^2 dx}
\]
\[
= \sum_{j=1}^{k} \frac{1}{\int_{B(b_{j,s},r)} \psi^s(x)|\nabla \pi_k(V^s)|^2 dx}{\sum_{j=1}^{k} \int_{B(b_{j,s},r)} |\nabla \pi_k(V^s)|^2 dx}.
\]
The above estimates imply that there exists ϵ_0 independent of μ_0, μ_1, λ_0 such that if $0 < \epsilon < \epsilon_0$, then $\pi_k(V^s_\epsilon) \in M^\ast(\mu_0, \mu_1, \lambda_0)$. By using Lemma 2.4, as in Proposition 4.3,

$$
\int_\Omega |\nabla V^s_\epsilon|^2 dx = kS^N + O(\epsilon^{N-2}),
$$

$$
\int_\Omega K(x)|V^s_\epsilon|^{2^*} dx = KMkS^N + O(\epsilon^N) + O(\epsilon^t),
$$

$$
\sum_{i=1}^m \sum_{\lambda=0}^{k-1} \mu_i \int_\Omega \frac{|V^s_\epsilon|^2}{|x-a_i|^2} dx = \lambda_0 \int_\Omega |V^s_\epsilon|^2 dx = O(\epsilon^2).
$$

By (3.3) in [25], we also know that

$$
\int_\Omega \frac{|V^s_\epsilon|^2}{|x|^2} dx \geq c\epsilon^2, \quad \text{as } \epsilon \to 0.
$$

The above estimates imply that there exists $t_1 > 0$ such that $t^2_\epsilon \geq t_1$ as ϵ small enough. Hence

$$
\max_{t \geq t_1} J_k(tV^s_\epsilon) \leq \max_{t \geq 0} \left\{ \int_\Omega \left(\frac{t^2_\epsilon}{2} |\nabla V^s_\epsilon|^2 - \frac{t^2_\epsilon}{2} K(x)|V^s_\epsilon|^{2^*} \right) dx \right. \right.
$$

$$
- \sum_{i=1}^m \sum_{\lambda=0}^{k-1} \frac{t^2_\epsilon \mu_i}{2} \int_\Omega \frac{|V^s_\epsilon|^2}{|x-a_i|^2} dx \right.
$$

$$
- \frac{t^2_\epsilon \lambda_0}{2} \int_\Omega |V^s_\epsilon|^2 dx - \frac{t^2_\epsilon \mu_0}{2} \int_\Omega \frac{|V^s_\epsilon|^2}{|x|^2} dx.
$$

Since $N \geq 5$, $\sum_{i=1}^m \sum_{\lambda=0}^{k-1} \frac{\mu_i}{|a_i-b_{i,j}|} > 0, \alpha_4 > 2$, then there exist $\epsilon^{\mu_0}_0 > 0, \epsilon^{\lambda_0}_0 > 0$ such that (5.1) holds.

Let $\mathbb{R}^N = \bigcup_{i=1}^k \mathbb{R}^N_i$ with $\mathbb{R}^N_i := \{ x = (y, z) \in \mathbb{R}^2 \times \mathbb{R}^{N-2} : y = |y|(\cos\theta, \sin\theta), (i-1)2\pi < \theta < i2\pi \}, i = 1, 2, \ldots, k$.

Lemma 5.7. Let $N \geq 5, \mu^+_0 + \sum_{i=1}^m k_i^+ \mu^+_l < \pi$. Assume that $(K_1), (K_5), (K_6)$ and (H) hold, then there exist $\epsilon^{\mu_0}_0 > 0, \epsilon^{\mu_1}_l > 0, \epsilon^{\mu_0}_0 > 0$ such that for all $0 < \mu_0 < \epsilon^{\mu_0}_0, 0 \leq \mu_l < \epsilon^{\mu_1}_l, |\mu_l| < \epsilon^{\mu_1}_l (l = 1, \ldots, m, l \neq I), 0 \leq \lambda_0 < \epsilon^{\lambda_0}_0$, it holds

$$
\bar{\epsilon} < \eta^s.
$$
Proof. By contradiction we assume that there exist $\mu_0^n \to 0$, $\mu_i^n \to 0$, $\lambda_0^n \to 0$ and $u_n \in \Gamma^s(\mu_0, \mu_1, \lambda_0)$ such that

$$J_{k,n}(u_n) := \frac{1}{2} \left(\int_{\Omega} \left| \nabla u_n \right|^2 - \mu_0^n \frac{\left| u_n \right|^2}{|x|^2} \right) dx - \sum_{l=1}^{m} \sum_{i=1}^{k} \mu_i^n \frac{1}{2} \int_{\Omega} \frac{\left| u_n \right|^2}{|x-a_i^n|^2} dx - \frac{\lambda_0^n}{2} \int_{\Omega} \left| u_n \right|^2 dx - \frac{1}{2^*} \int_{\Omega} K(x) \left| u_n \right|^{2^*} dx$$

$$\to c \leq \bar{c} = \frac{1}{N} \frac{S_+^N}{K_M}.$$

Then it is obvious that $\{u_n\}$ is bounded. Denote $u_n^\Omega := u_n|_{\Omega \cap \Omega}$. Now let us consider u_n^Ω in $H_0^1(\mathbb{R}^N \cap \Omega)$. Up to a subsequence, there exists $l > 0$ such that

$$\lim_{n \to \infty} \int_{\Omega \cap \Omega} \left| \nabla u_n^\Omega \right|^2 dx = \lim_{n \to \infty} \int_{\Omega \cap \Omega} K(x) \left| u_n^\Omega \right|^2 dx = l.$$

As in Lemma 3.11 in [18], we deduce that $l = \frac{S_+^N}{K_M}$ and then

$$\lim_{n \to \infty} \int_{\Omega \cap \Omega} (K_M - K(x)) \left| u_n^\Omega \right|^2 dx = 0,$$

which implies a contradiction. \hfill \Box

Lemma 5.8. Let $N \geq 5, \mu_0^+, \sum_{l=1}^{m} k \mu_l^+ < \bar{\mu}$. Assume that $(K_4), (K_5), (K_6), (H)$ hold and $0 < \mu_0 < \min\{\epsilon_{\mu_0}, \epsilon_{\mu_0}^2\}$, $0 \leq \mu_L < \epsilon_{\mu_L}$, $|\mu_l| < \epsilon_{\mu_l}$ ($l = 1, \ldots, m, l \neq L$), $0 \leq \lambda_0 < \min\{\epsilon_{\lambda_0}, \epsilon_{\lambda_0}^1, \lambda_0^\mu\}$. Then for all $u \in M^s(\mu_0, \mu_1, \lambda_0)$, there exist $\rho_u > 0$ and a differential function $f : B(0, \rho_u) \subset (H_0^1)^k(\Omega) \to \mathbb{R}$ such that $f(0) = 1$ and $f(u)(u - w) \in M^s(\mu_0, \mu_1, \lambda_0), \forall w \in B(0, \rho_u)$. Moreover, for all $v \in (H_0^1)^k(\Omega)$,

$$\langle f'(0), v \rangle = -2 \int_{\Omega} \left(\nabla u \nabla v - \mu_0 \frac{u v}{|x|^2} \right) dx - \sum_{l=1}^{m} \sum_{i=1}^{k} \mu_l \int_{\Omega} \frac{u v}{|x-a_i^n|^2} dx - 2 \int_{\Omega} \mu_0 u v dx - 2^* \int_{\Omega} \mu_0^{1/2} u v dx - 2^* \int_{\Omega} K(x) |u|^2 v dx.$$

Proof. The proof is standard and we sketch it here. For $u \in M^s(\mu_0, \mu_1, \lambda_0)$, define a function $F : \mathbb{R} \times (H_0^1)^k(\Omega) \to \mathbb{R}$ by

$$F_u(t, w) := \langle J'_k(t(u - w)), t(u - w) \rangle = t^2 \int_{\Omega} \left(\left| \nabla (u - w) \right|^2 - \mu_0 \frac{(u - w)^2}{|x|^2} \right) dx - t^2 \sum_{l=1}^{m} \sum_{i=1}^{k} \mu_l \int_{\Omega} \frac{(u - w)^2}{|x-a_i^n|^2} dx - t^2 \lambda_0 \int_{\Omega} (u - w)^2 dx - t^2 \int_{\Omega} K(x) |u - w|^2 dx.$$

Then $F_u(1, 0) = \langle J'_k(u), u \rangle = 0$ and

$$\frac{d}{dt} F_u(1, 0) = 2 \int_{\Omega} \left(\nabla u^2 - \mu_0 \frac{u^2}{|x|^2} \right) dx - 2 \sum_{l=1}^{m} \sum_{i=1}^{k} \mu_l \int_{\Omega} \frac{u^2}{|x-a_i^n|^2} dx.$$
\[-2\lambda_0 \int_{\Omega} u^2 dx - 2^* \int_{\Omega} K(x)|u|^2 dx \neq 0. \]

By using the implicit function theorem the results follow. \(\square \)

Now we prove the implicit function theorem the results follow.

Proof of Theorem 5.1. Let \(0 < \mu_0 < \epsilon_{\mu_0} := \min\{\epsilon_{\mu_0}^0, \epsilon_{\mu_0}^1, \epsilon_{\mu_0}^2\} \), \(0 \leq \mu_L < \epsilon_{\mu_L} := \min\{\epsilon_{\mu_0}^0, \epsilon_{\mu_0}^1, \epsilon_{\mu_0}^2\} \), \(|\mu_l| < \epsilon_{\mu_l} \) \((l = 1, \ldots, m, l \neq L) \), \(0 \leq \lambda_0 < \epsilon_{\lambda_0} := \min\{\epsilon_{\lambda_0}^0, \epsilon_{\lambda_0}^1, \epsilon_{\lambda_0}^2\} \), where \(\epsilon_{\mu_0}, \epsilon_{\mu_0}^1, \epsilon_{\mu_0}^2, \epsilon_{\mu_L}, \epsilon_{\mu_0}, \epsilon_{\lambda_0}^0, \epsilon_{\lambda_0}^1, \epsilon_{\lambda_0}^2 \) are given in Lemmas 5.2, 5.6 and 5.7.

Let \(\{u_n\} \subset (H^1_0)^k(\Omega) \) be a minimizing sequence for \(J_k \) in \(M^a(\mu_0, \mu_l, \lambda_0) \), that is, \(J_k(u_n) \rightarrow m^a \) as \(n \rightarrow \infty \). We assume \(u_n \geq 0 \) since \(J_k(u_n) = J_k(|u_n|) \). Then the Ekeland variational principle implies the existence of a subsequence of \(\{u_n\} \), denoted also by \(\{u_n\} \), such that

\[J_k(u_n) \leq m^a + \frac{1}{n}, \quad J_k(w) \geq J_k(u_n) - \frac{1}{n}||w - u_n||, \quad \forall w \in M^a(\mu_0, \mu_l, \lambda_0). \]

Choose \(0 < \rho < \rho_n \equiv \rho_{u_n} \) and \(f_n \equiv f_{u_n} \), where \(\rho_{u_n}, f_{u_n} \) are given by Lemma 5.8. Set \(v_\rho = pv \) with \(v \in (H^1_0)^k(\Omega) \) and \(||v||_{H^1_0(\Omega)} = 1 \), then \(v_\rho \in B(0, \rho_n) \). By using Lemma 5.8, we get \(w_\rho = f_n(v_\rho)(u_n - v_\rho) \in M^a(\mu_0, \mu_l, \lambda_0) \). As in Theorem 3.13 in [18], it follows \(J_k'(u_n) \rightarrow 0 \) as \(n \rightarrow \infty \). Therefore \(\{u_n\} \) is a PS sequence for \(J_k \). Lemma 5.6 gives \(m^a < \tilde{c} \). Then we end the proof by Lemmas 4.2 and 5.2. \(\square \)

5.2. Part II

Now we consider the existence of multiple solutions by using the Lusternik–Schnirelmann category theory. The ideas are borrowed from [18,26,27].

For \(\delta > 0 \), set

\[C_\delta(K) := \{x \in \Omega | \text{dist}(x, C(K)) \leq \delta\}. \]

We need the following.

\((K_5) \). \(b \in \Omega \cap \mathbb{R}^2 \times \{0\} \) for every \(b \in C(K) \).

Note that if \(b = (b^{(2)}, 0) \in C(K) \), then \(b_i := (e^{2\pi(i-1)\sqrt{-1}/kb^{(2)}}, 0) \in C(K) \) for every \(1 \leq i \leq k \).

\((K_6) \). There exists \(\alpha_5 > 2 \) such that if \(b \in C(K) \), then \(K(x) = K(b_i) + O(|x - b_i|^{\alpha_5}) \) as \(x \rightarrow b_i \), for every \(1 \leq i \leq k \).

\((K_7) \). There exist \(R_0 \) and \(d_0 > 0 \) such that \(B(0, R_0) \subset \Omega \) and \(\sup_{x \in \Omega, |x| > R_0} |K(x)| \leq K_M - d_0 \).

Set

\[\mathcal{N}_K(\mu_0, \mu_l, \lambda_0) := \{u \in \mathcal{N}_K(\mu_0, \mu_l, \lambda_0) : J_k(u) < \overline{c}\}, \]

where \(\overline{c} \) is given in Lemma 5.2.
Theorem 5.9. Let \(N \geq 5, \delta > 0, \mu_0^+ + \sum_{i=1}^m k \mu_i^+ < \overline{\nu} \). If \((\mathcal{K}_4), (\mathcal{K}_5)', (\mathcal{K}_6)', (\mathcal{K}_7), (\mathcal{H})\) hold and
\[
\sum_{l=1}^m k \sum_{i=1}^k \frac{\mu_l}{|a_l^2 - b_i|^2} > 0, \quad \text{for every } b \in \mathcal{C}(K),
\]
then there exist \(\epsilon_0' > 0, \epsilon_{\mu_l} > 0 \) \((l = 1, \ldots, m), \epsilon_{\lambda_0} > 0 \) such that for all \(0 < \mu_0 < \epsilon_0', 0 \leq \mu_L < \epsilon_{\mu_l}', |\mu_l| < \epsilon_{\mu_l}', l = 1, \ldots, m, l \neq L \), \(0 \leq \lambda_0 < \epsilon_{\lambda_0}' \), the problem \((\mathcal{P}_{\lambda_0,K})\) admits at least \(\text{Cat}_{\mathcal{C}_i(K)}\mathcal{C}(K) \) positive solutions which are \(\mathbb{Z}_k \times SO(N - 2) \)-invariant.

The proof of the above theorem depends on some lemmas.

Lemma 5.10. Let \(\mu_0^+ + \sum_{i=1}^m k \mu_i^+ < \overline{\nu}, 0 < \mu_0 \leq \epsilon_{\mu_0}^0, 0 \leq \mu_L \leq \epsilon_{\mu_L}^0 \) (where \(\epsilon_{\mu_0}^0, \epsilon_{\mu_L}^0 \) are constants appearing in Lemma 5.2) and \((\mathcal{K}_4)\) hold. If \(\{u_n\} \in \mathcal{N}_k(\mu_0, \mu_1, \lambda_0) \) satisfies
\[
J_k(u_n) \rightarrow c < \tilde{c}, \quad J_k|\mathcal{N}_k(\mu_0, \mu_1, \lambda_0)(u_n) \rightarrow 0,
\]
then \(\{u_n\} \) has a converging subsequence in \((H^1_0)^k(\Omega) \).

Proof. By using Lemmas 4.2 and 5.2, the result follows as Lemma 4.1 in [18]. \(\square \)

Denote \(\Omega_i := (\mathbb{R}^N_i \cap \Omega) \setminus \partial(\mathbb{R}^N_i \cap \Omega) \).

Lemma 5.11. Let \(N \geq 5, \mu_0^+ + \sum_{i=1}^m k \mu_i^+ < \overline{\nu} \). Assume that \((\mathcal{K}_4), (\mathcal{K}_5)', (\mathcal{K}_6)'\) hold and
\[
\sum_{l=1}^m k \sum_{i=1}^k \frac{\mu_l}{|a_l^2 - b_i|^2} > 0, \quad \text{for every } b \in \mathcal{C}(K).
\]
Then there exist \(\epsilon_{\mu_0}^n > 0, \epsilon_{\lambda_0}^n > 0 \) such that if \(0 < \mu_0 < \epsilon_{\mu_0}^n, 0 \leq \lambda_0 < \epsilon_{\lambda_0}^n \), it holds \(\mathcal{N}_k(\mu_0, \mu_1, \lambda_0) \neq \emptyset \). Moreover, for any \(\mu_0^n \rightarrow 0, \mu_1^n \rightarrow 0, \lambda_0^n \rightarrow 0 \) as \(n \rightarrow \infty \) and \(\{v_n\} \in \mathcal{N}_k(\mu_0^n, \mu_1^n, \lambda_0^n) \), there exist \(x_n^i := (x_n^{i,(2), (N-2)}, \mu_1^n) \in \Omega_i \) and \(\rho_n \in \mathbb{R}^+ \) such that \(x_n^i \rightarrow x_n^i = (x_0^{i,(2), (N-2)}, 0) \in \mathcal{C}(K), \rho_n \rightarrow 0 \) and
\[
v_n^i = \left(\frac{S}{K M} \right)^{\frac{N-2}{2}} u_r \left(\frac{-x_n^i}{\rho_n} \right) \rightarrow 0 \quad \text{in } D^{1,2}(\Omega_i), \text{ as } n \rightarrow \infty, i = 1, 2, \ldots, k,
\]
where \(u_r \) is normalized constant such that \(||u_r||_2^* = 1 \).

Proof. Using the arguments of Lemma 5.6, it is easy to get \(\mathcal{N}_k(\mu_0, \mu_1, \lambda_0) \neq \emptyset \). Now we prove the second part.

Consider \(v_n^i \) in \(H_0^1(\mathbb{R}^N_i \cap \Omega) \) and set as in Lemma 3.11 in [18] that
\[
\lim_{n \rightarrow \infty} \int_{\mathbb{R}^N_i \cap \Omega} |\nabla v_n^i|^2 dx = \lim_{n \rightarrow \infty} \int_{\mathbb{R}^N_i \cap \Omega} K(x)|v_n^i|^2 dx = l.
\]
Then \(l = \frac{S^{\frac{N}{2}}}{K_M^{\frac{N-2}{2}}} \) and hence

\[
\lim_{n \to \infty} \int_{\mathbb{R}^N \cap \Omega} (K_M - K(x))|v_n^{1}|^{2*} \, dx = 0.
\]

Set \(w_n(x) := \frac{v_n}{\|v_n\|_{L^*}} \), then \(\|w_n(x)\|_{L^*} = 1 \) and

\[
\int_{\mathbb{R}^N \cap \Omega} |\nabla w_n(x)|^{2} \, dx \to S.
\]

Therefore

\[
\int_{\Omega_1} |w_n(x)|^{2*} \, dx = 1, \quad \int_{\Omega_1} |\nabla w_n(x)|^{2} \, dx \to S.
\]

By using Corollary 4.1 in [28] and a similar proof to Lemma 4.2 in [18], there exist \(x_n^{1} \in \Omega_1 \) and \(r_n \in \mathbb{R}^+ \) such that \(x_n^{1} \to x_0 \in C_{\delta}(K) \), \(r_n \to 0 \) as \(n \to \infty \) and

\[
w_n - u_r \left(\frac{\cdot - x_n^{1}}{r_n} \right) \to 0 \quad \text{in} \quad D^{1,2}(\Omega_1), \quad \text{as} \quad n \to \infty.
\]

Hence

\[
v_n^{1} - \left(\frac{S}{K_M} \right)^{\frac{N-2}{2}} u_r \left(\frac{\cdot - x_n^{1}}{r_n} \right) \to 0 \quad \text{in} \quad D^{1,2}(\Omega_1).
\]

By recalling the symmetry of \(v_n \), we end the proof. \(\square \)

To continue, as in [18] we define

\[
\xi(x) := \begin{cases}
x & \text{if } |x| < R_0, \\
R_0 \frac{x}{|x|} & \text{if } |x| \geq R_0.
\end{cases}
\]

For any \(0 \neq u \in (H^1_{0}(\Omega))^k \), set

\[
\Theta(u) := \frac{\Omega \xi(x)|\nabla u|^2 \, dx}{\Omega |\nabla u|^2 \, dx}.
\]

From the proof of Lemma 5.6, it is known that for any \(0 \neq u \in (H^1_{0}(\Omega))^k \), \(t_{\mu_0, \mu_1, \lambda_0}(u) \in \mathcal{N}_k(\mu_0, \mu_1, \lambda_0) \) with

\[
t_{\mu_0, \mu_1, \lambda_0}(u) = \left(\frac{\Omega \left(|\nabla u|^2 - \mu_0 \frac{u^2}{|x|^2} - \lambda_0 u^2 \right) \, dx - \sum_{l=1}^{k} \sum_{i=1}^{m_l} \mu_l \int_{\Omega} \frac{u^2}{|x-a_l^i|^2} \, dx}{\Omega K(x)|u|^2 \, dx} \right)^{\frac{N-2}{4}}.
\]

For \(b = (b^{(2)}, 0) \in \mathbb{R}^2 \times \{0\} \), define \(\Psi_k : \Omega \to (H^1_{0}(\Omega))^k \) as

\[
\Psi_k(b)(x) = t_{\mu_0, \mu_1, \lambda_0}(U_{\epsilon(\mu_0, \mu_1, \lambda_0)}(x))U_{\epsilon(\mu_0, \mu_1, \lambda_0)}(x) := t_{\mu_0, \mu_1, \lambda_0}U_{\epsilon(\mu_0, \mu_1, \lambda_0)}(x),
\]
Lemma 5.13. It is also obvious that all

Lemma 5.12. where \(l > 2 \) and \(\varphi(x) \), a radial function, satisfying

\[
0 \leq \varphi \leq 1, \quad \varphi = 1 \quad \text{if} \quad x \in \bigcup_{i=1}^{k} B\left(b_i, \frac{r}{2}\right), \quad \varphi = 0 \quad \text{if} \quad x \notin \bigcup_{i=1}^{k} B(b_i, r),
\]

\[
|\nabla \varphi| \leq \frac{4}{r}
\]

with \(r > 0 \) small enough, and \(\epsilon(\mu_0, \mu_1, \lambda_0) \to 0 \) as \(\mu_0 \to 0, \lambda_0 \to 0, \mu_1 \to 0 \).

The proof of the following lemma is almost the same as Lemma 5.6.

Lemma 5.12. Let \(N \geq 5, b \in C(K), \mu_0^+ + \sum_{l=1}^{m} k\mu_l^+ < \overline{\mu} \). If \((K_4), (K_5)', (K_6)' \) hold and

\[
\sum_{l=1}^{m} \sum_{i=1}^{k} |\mu_l^+ - b_i|^2 > 0, \quad \lambda_0 \geq 0,
\]

then there exist \(\tilde{c}_{\mu_0}^1, \tilde{c}_{\mu_L}^1 \) such that

\[
J_k(\Psi_k(b)) = \max_{t>0} J_k(\Psi(t \epsilon(\mu_0, \mu_1, \lambda_0))) < \tilde{c} \quad \text{for all} \quad 0 < \mu_0 \leq \tilde{c}_{\mu_0}^1, \quad 0 \leq \mu_L \leq \tilde{c}_{\mu_L}^1.
\]

By Lemma 5.12 we see that if \(0 < \mu_0 \leq \tilde{c}_{\mu_0}^1, 0 \leq \mu_L \leq \tilde{c}_{\mu_L}^1 \), then \(\Psi_k(b) \in \mathcal{N}_k(\mu_0, \mu_1, \lambda_0) \).

It is also obvious that \(J_k(\Psi_k(b)) = \tilde{c} + o(1) \) as \(\mu_0 \to 0, \mu_1 \to 0, \lambda_0 \to 0 \) and there exist \(c_1 > 0, c_2 > 0 \) such that \(c_1 < t_{\mu_0, \mu_1, \lambda_0} U_0(\mu_0, \mu_1, \lambda_0)(x) < c_2 \) for all \(b \in C(K) \).

Lemma 5.13. Let \(N \geq 5, \mu_0^+ + \sum_{l=1}^{m} k\mu_l^+ < \overline{\mu}, b \in C(K) \) and \((K_4), (K_5)', (K_6)' \) hold. For all \(b \in C(K) \), it follows

\[
|\nabla \Psi_k(b)|^2 \to d\mu = \sum_{i=1}^{k} \frac{S^{N/2}}{S^{N/2}} \delta_{b_i}, \quad |\Psi_k(b)|^2 \to d\nu = \sum_{i=1}^{k} \frac{S^{N/2}}{S^{N/2}} \delta_{b_i},
\]

as \(\mu_0 \to 0, \mu_1 \to 0, \lambda_0 \to 0 \).

Proof. Note that \(\Psi_k(b) \) is bounded in \((H^1_0)^k(\Omega) \) and

\[
\int_{\Omega} |\nabla \Psi_k(b)|^2 dx = \sum_{i=1}^{k} \int_{B(b_i, r)} |\nabla (t_{\mu_0, \mu_1, \lambda_0}) \varphi(x) [U_0^{(\mu_0, \mu_1, \lambda_0)}(x - b_i)]|^2 dx,
\]

\[
\int_{\Omega} K(x)|\Psi_k(b)|^2^* dx = \sum_{i=1}^{k} \int_{B(b_i, r)} K(x)|t_{\mu_0, \mu_1, \lambda_0} \varphi(x) [U_0^{(\mu_0, \mu_1, \lambda_0)}(x - b_i)]|^2^* dx.
\]

Assume \(\mu_0^0 \to 0, \mu_1^0 \to 0, \lambda_0^0 \to 0 \) as \(n \to \infty \). Up to a subsequence, we get the existence of \(l > 0 \) such that

\[
\lim_{n \to \infty} \int_{B(b_i, r)} |\nabla (t_{\mu_0^0, \mu_1^0, \lambda_0^0}) \varphi(x) [U_0^{(\mu_0^0, \mu_1^0, \lambda_0^0)}(x - b_i)]|^2 dx
\]

\[
= \lim_{n \to \infty} \int_{B(b_i, r)} K(x)|t_{\mu_0^0, \mu_1^0, \lambda_0^0} \varphi(x) [U_0^{(\mu_0^0, \mu_1^0, \lambda_0^0)}(x - b_i)]|^2^* dx
\]

\[
= l.
\]
Then \(l = \frac{-S}{K_M} \) and

\[
\lim_{n \to \infty} \int_{B(b,r)} (K_M - K(x))|t_{\mu_0}^{n,\mu_1} \lambda_n \varphi(x)|U^{(\mu_0,\mu_1,\lambda_n)}_0(x - b_1)|2^* dx = 0.
\]

Set \(w_1(x) := \frac{t_{\mu_0}^{n,\mu_1} \lambda_n \varphi(x)U^{(\mu_0,\mu_1,\lambda_n)}_0(x - b_1)}{\|t_{\mu_0}^{n,\mu_1} \lambda_n \varphi(x)U^{(\mu_0,\mu_1,\lambda_n)}_0(x - b_1)\|_2}, \) then \(\|w_1(x)\|_2 = 1 \) and

\[
\int_{B(b,r)} |\nabla w_1(x)|^2 dx \to S.
\]

Applying the arguments of Theorem 3.13 in [18], it holds

\[
|\nabla w_1|^2 \to d\bar{u}_1 = S\bar{b}_1, \quad |w_1|^2 \to d\tilde{v}_1 = \tilde{b}_1,
\]

which ends the proof. \(\square \)

Lemma 5.14. Let \(N \geq 5, \mu_0^+ + \sum_{i=1}^m k \mu_i^+ < \bar{\mu} \) and \((K_4), (K_5)', (K_6)', (K_7)\) hold. For \(\mu_0 \to 0, \mu_1 \to 0, \lambda_0 \to 0, \)

1. \(\Theta(\Psi_k(b)) = b + o(1), \) uniformly for \(b \in B(0, R_0) \cap C(K); \)
2. sup\{dist\((\Theta(u), C(K)) : u \in \overline{H}_k(\mu_0, \mu_1, \lambda_0) \} \to 0.

Proof. (1) Let \(b \in B(0, R_0) \cap C(K). \) By Lemma 5.13, we have

\[
\Theta(\Psi_k(b)) = \frac{\int_{\Omega} \xi(x)|\nabla \Psi_k(b)|^2 dx}{\int_{\Omega} |\nabla \Psi_k(b)|^2 dx} = \frac{\int_{\Omega} \xi(x) d\bar{\mu}}{\int_{\Omega} d\bar{\mu}} + o(1) = b + o(1),
\]

as \(\mu_0 \to 0, \mu_1 \to 0, \lambda_0 \to 0. \)

(2) Take \(\mu_0^n \to 0, \mu_1^n \to 0, \lambda_1^n \to 0 \) as \(n \to \infty \) and \(\{v_n\} \in \overline{H}_k(\mu_0^n, \mu_1^n, \lambda_0^n) \). By Lemma 5.11, there exist \(x_0^i = (x_0^{(2)}_n, x_0^{(N-2)}_n) \in \Omega_1 \) and \(r_1 \to 0, r_2 \to 0 \) such that \(x^n_i \to x^i_0 \)

\[
v_i^i - \left(\frac{S}{K_M} \right)^{N^2} \mu_0^{(i)} \left(\frac{x^n_i}{r_n} \right) \to 0 \quad \text{in} \quad D^{1,2}(\Omega_1), \quad \text{as} \quad n \to \infty, \quad i = 1, 2, \ldots, k.
\]

Since \(\Theta(u) \) is continuous, then

\[
\Theta(v_n) = \frac{\int_{\Omega} \xi(x)|\nabla v_n|^2 dx}{\int_{\Omega} |\nabla v_n|^2 dx} = \frac{\int_{\Omega} \xi(x) \left| \nabla u_r \left(\frac{x - x^n_i}{r_n} \right) \right|^2 dx}{\int_{\Omega} \left| \nabla u_r \left(\frac{x - x^n_i}{r_n} \right) \right|^2 dx} + o(1) = \xi(x^i_0) + o(1).
\]

Noticing that \(x^n_0 \in B(0, R_0) \) leads to \(\xi(x^n_0) = x^i_0 \), the result desired is true. \(\square \)

Proof of Theorem 5.9. We follow the arguments of Theorem 4.5 in [18] and Theorem A in [27].

Given \(\delta > 0, \) by using Lemmas 5.12 and 5.14, there exist \(\epsilon_{\mu_0}'' > 0, \epsilon_{\mu_1}'' > 0 \) \((l = 1, \ldots, m), \epsilon_{\lambda_0}'' > 0 \) such that for all \(0 < \mu_0 < \epsilon_{\mu_0}'' \), \(0 \leq \mu_L < \epsilon_{\mu_0}'' \), \(|\mu_1| < \epsilon_{\mu_1}'' \), \(l = 1, \ldots, m, l \neq i \),
\(\lambda_0 \leq \lambda_0 < \epsilon_0' \)

\(L \), \(0 \leq \lambda_0 < \epsilon_0' \), we have \(\Psi_k(b) \in \mathcal{N}_k(\mu_0, \mu_1, \lambda_0) \) for any \(b \in C(K) \) and

\[
|\Theta(\Psi_k(b)) - b| < \delta, \quad \forall \ b \in B(0, R_0) \cap C(K),
\]

and\[
\Theta(u) \in C_\delta(K), \quad \forall \ u \in \mathcal{N}_k(\mu_0, \mu_1, \lambda_0).
\]

Define \(H(t,x) := x + t(\Theta(\Psi_k(b)) - b) \) with \((t,x) \in [0,1] \times C(K) \). Then \(H \) is continuous, \(H([0,1] \times C(K)) \subset C_\delta(K) \) and \(\Theta \circ H \) is homotopic to the inclusion \(C(K) \hookrightarrow C_\delta(K) \).

By Lemma 5.10, it is enough to prove \(\text{Cat}(\mathcal{N}_k(\mu_0, \mu_1, \lambda_0)) \geq \text{Cat}_{C_\delta(K)}C(K) \), which can be obtained as Theorem 4.5 in [18], and therefore the problem \((\mathcal{P}_{\lambda_0,K}) \) admits at least \(\text{Cat}_{C_\delta(K)}C(K) \) solutions which are \(\mathbb{Z}_k \times \mathbb{S}(N-2) \)-invariant.

It is also easy to show that any of these solutions has a fixed sign, as Theorem 4.5 in [18] and Theorem 1.1 in [29]. \(\Box \)

Remark 5.15. (1) The problem considered here involves symmetry and multiple solutions are obtained, which are different from [12,13,15], where the symmetry is not been considered and existence, but not multiplicity, of solutions is obtained. In [14], Felli and Terracini considered (1.1) with symmetric multi-polar potentials in \(\mathbb{R}^N \) when \(K(x) \equiv 1 \) and proved the existence of positive solutions, while the domain we considered here is bounded and \(K(x) \) is positive bounded.

(2) In [30], Felli and Schneider considered the problem related to the Caffarelli–Kohn–Nirenberg type inequality and showed the symmetry-breaking phenomenon in the inequality, namely the existence of non-radial minimizers, which motivates us to study the symmetry-breaking phenomenon of problem (1.1) in the near future. In [31], Badiale and Rolando also proved the existence of positive radial solutions for the semilinear elliptic problem with singular potentials, where both sub-critical and super-critical nonlinearities, rather than critical nonlinearities, are considered.

(3) It can be seen that when \(\lambda_0 \neq 0 \) and the domain \(\Omega \) is bounded, there exist nontrivial solutions for the problem \((\mathcal{P}_{\lambda_0,K}) \). However, if we consider the problem in \(\mathbb{R}^N \), then \(\lambda_0 \neq 0 \) may lead to the nonexistence of nontrivial solutions. Please see Appendix for a nonexistence result.

Acknowledgment

The authors would like to thank the anonymous referee for very valuable suggestions and comments.

Appendix

Consider the quasilinear elliptic problem

\[
\begin{align*}
-\Delta_p u - \mu \frac{|u|^{p-2} u}{|x|^p} &= \lambda |u|^{q-2} u + K(x)|u|^{p^* - 2} u \quad \text{in} \mathbb{R}^N, \\
\end{align*}
\]

(A.1)
where \(-\Delta_p u := -\text{div}(|\nabla u|^{p-2} \nabla u), 1 < p < N, \lambda \in \mathbb{R}, \mu < (\frac{N-p}{p})^p, p^* := \frac{Np}{N-p}\) is the critical Sobolev exponent, \(1 < q < p^*, K(x) \in C^1(\mathbb{R}^N)\) satisfying \(|K|_{\infty} < \infty\).

When \(p = 2, K(x) \equiv 1\), the nonexistence of nontrivial solutions for problem (A.1) can be seen in [32]. Here we state the nonexistence result for problem (A.1) motivated by [11].

Theorem A. Assume one of the following three cases holds:

1. \(\lambda > 0\), \((x, \nabla K) \leq 0\), for a.e. \(x \in \mathbb{R}^N\);
2. \(\lambda < 0\), \((x, \nabla K) \geq 0\), for a.e. \(x \in \mathbb{R}^N\);
3. \(\lambda = 0\), \((x, \nabla K) > 0\), for a.e. \(x \in \mathbb{R}^N\),
 or \(\lambda = 0\), \((x, \nabla K) < 0\), for a.e. \(x \in \mathbb{R}^N\).

Then if \(u \in W^{1,p}(\mathbb{R}^N)\) is a weak solution for problem (A.1), there holds \(u \equiv 0\).

Proof. Denote \(f(x, u) = \mu \frac{|u|^{p-2} u}{|x|^p} + \lambda |u|^{q-2} u + K(x)|u|^{p^* - 2} u\). Then problem (A.1) can be rewritten as

\[
\begin{align*}
-\Delta_p u &= f(x, u) \quad \text{in } \mathbb{R}^N, \\
u &= W^{1,p}(\mathbb{R}^N).
\end{align*}
\] (A.2)

It is easy to see that, for any \(\omega \in \mathbb{R}^N \setminus \{0\}\), there exists \(C(\omega) > 0\) such that \(|f(x, u)| \leq C(\omega)(1 + |u|^{p-1})\), \(\forall x \in \omega, u \in \mathbb{R}\). Then as Claim 5.5 in [11], \(u \in C^1(\mathbb{R}^N \setminus \{0\}) \cap W^{2,1}_{\text{loc}}(\mathbb{R}^N \setminus \{0\})\) following from Lemmas 2.1 and 2.2 in [33], Corollary 1.1 in [34] and Theorem 1, Proposition 1 in [35].

Now we prove \(u \in L^q(\mathbb{R}^N)\). Take a cut-off function (see Claim 5.3 in [11]) \(h \in C^\infty(\mathbb{R})\) satisfying \(h(t) \equiv 1\) for \(|t| \leq 1\), \(h(t) \equiv 0\) for \(|t| \geq 2\), \(0 \leq h \leq 1\). Given \(\epsilon > 0\) small enough, define \(\eta_\epsilon\) as:

\(\eta_\epsilon(x) = h(|x|/\epsilon)\) if \(|x| \leq 3\epsilon, \eta_\epsilon(x) = h(1/\epsilon|x|)\) if \(|x| \geq 1/\epsilon\), and \(\eta_\epsilon(x) \equiv 1\) elsewhere. Then it is obvious that \(\eta_\epsilon \in C^\infty(\mathbb{R}^N \setminus \{0\})\). Since \(u\) is a weak solution for problem (A.1),

\[
\int_{\mathbb{R}^N} \left(|\nabla u|^{p-2} (\nabla u \cdot \nabla (\eta_\epsilon u)) - \mu |\eta_\epsilon|^p + \lambda \eta_\epsilon |u|^p \right) dx - \int_{\mathbb{R}^N} K(x) \eta_\epsilon |u|^{p^*} dx = 0.
\]

Then by the Hardy inequality, the Sobolev inequality and the Hölder inequality,

\[
|\lambda| \int_{\mathbb{R}^N} \eta_\epsilon |u|^p dx \leq \int_{\mathbb{R}^N} K(x) \eta_\epsilon |u|^{p^*} dx
\]

\[
+ \int_{\mathbb{R}^N} |\nabla u|^{p-2} \left(|\nabla u| - \mu |\eta_\epsilon|^p \right) dx
\]

\[
\leq C \int_{\mathbb{R}^N} |\nabla u|^p + \int_{\mathbb{R}^N} |\nabla u|^{p-1} |\nabla \eta_\epsilon| |u| dx
\]

\[
\leq C,
\]

where the constant \(C > 0\) is independent of \(\epsilon\). Letting \(\epsilon \to 0\), we have \(u \in L^q(\mathbb{R}^N)\).

Therefore, by Claim 5.3 in [11],

\[
\lambda N \left(\frac{1}{p} - \frac{1}{q} \right) \int_{\mathbb{R}^N} |u|^p dx - \frac{1}{p} \int_{\mathbb{R}^N} |u|^{p^*} \langle x, \nabla K \rangle dx = 0,
\]

which implies \(u \equiv 0\). \(\square\)

When \(K(x) \equiv 1, \lambda \neq 0\), Theorem A extends the result in [32] to the \(p\)-Laplace case.
References

