Stereoselective synthesis of a composite knot with nine crossings

Liang Zhang, Alexander J. Stephens, Alina L. Nussbaumer, Jean-François Lemmonier, Pia Jurcek, Ilígio J. Vitorica-Yrezabal, David A. Leigh

School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

Background

- Knots are fundamental elements of structure, exploited in basic tools and materials.
- Out of the 6 billion known knot formations, just four have been created by synthetic chemists, and they are all Prime Knots.

Figure 1. Synthesis of the most complicated topological isomers, the +3,#3,#+3, Composite Knot and 9² link.

Synthesis of The Mixture

- The self-assembly of six ligand 1 and six Fe(II) cations generates open helicate Fe₆₁⁺ after heating to 130°C for 24 hours.
- Following definition ring-closing metathesis of open helicate, fully closed isomers are generated.
- Demetallation is achieved by treatment with NaOH.

X-Ray Crystal Structure

Single crystals of Fe₆₁²⁺ are grown by solvent diffusion of isopropanol into a solution of mixture in acetone. The solid-state structure is determined by X-ray crystallography using the Diamond synchrotron source and refined by Maximum Entropy Method (MEM).

Characterization

- The formation of open helicate Fe₆₁⁺, fully closed topological isomers Fe₆³⁺ and Fe₆⁵⁺, and organic mixture 2 and 3 are characterized by ¹H-NMR and ESI-MS.

Conclusion

- The two most complicated topological structures: +3,#+3,#+3, Composite Knot and 9² link have been synthesized through cyclisation of a hexameric helicate. The composite knot Fe₆⁺ is separated and characterized by X-ray crystallography.