Spintronics book cover

Spintronics

This new volume focuses on a new, exciting field of research: Spintronics, the area also known as spin-based electronics. The ultimate aim of researchers in this area is to develop new devices that exploit the spin of an electron instead of, or in addition to, its electronic charge.In recent years many groups worldwide have devoted huge efforts to research of spintronic materials, from their technology through characterization to modeling. The resultant explosion of papers in this field and the solid scientific results achieved justify the publication of this volume. Its goal is to summarize the current level of understanding and to highlight some key results and milestones that have been achieved to date.Semiconductor spintronics is expected to lead to a new generation of transistors, lasers and integrated magnetic sensors that can be used to create ultra-low power, high-speed memory, logic and photonic devices. In addition, development of novel devices such as spin-polarized light emitters, spin field effect transistors, integrated sensors and high-temperature electronics is anticipated.

Audience
Physicists, solid state scientists, device engineers, semiconductor researchers, materials scientists and industrial practitioners.

Hardbound, 536 Pages

Published: November 2008

Imprint: Academic Press

ISBN: 978-0-08-044956-2

Contents

  • 1. Maiken H. Mikkelsen, Roberto C. Myers, Gregory D. Fuchs, David D.Awschalom, University of California, Santa Barbara, Single spin coherence in Semiconductors 2. Jairo Sinova, Texas A&M University, and A.H. MacDonald, University of Texas at Austin, Theory of spin-orbit effects in semiconductors 3. Kin Man Yu, Tomasz Wojtowicz, Wladek Walkiewicz, Xinyu. Liu and Jacek K. Furdyna, University of Notre Dame and Lawrence Berkeley National Lab, Fermi level effects on Mn incorporation in III-Mn-V ferromagnetic semiconductors .4. Tomas Jungwirth, Bryan Gallagher and J. Wunderlich, University of Nottingham, Transport properties of ferromagnetic semiconductors 5. Fumihiro Matsukura, Daichi Chiba and Hideo Ohno, Tohoku University, Spintronic properties of ferromagnetic semiconductors 6. Charles Gould, Georg Schmidt and Laurens Molenkamp, Wurzburg University, Spintronic nanodevices 7. Joel Cibert, Lucien Besombes, David Ferrand and Henri Mariette, Laboratoire Louis Néel, Grenoble, Quantum structures of II-VI diluted magnetic semiconductors 8. Agnieszka Wolos and Maria Kaminska, University of Warsaw, Magnetic impurities in wide band-gap III-V semiconductors 9. Tomasz Dietl, Institute of Physics, Polish Academy of Science, University of Warsaw Exchange interactions and nano-scale phase separations in magnetically doped semiconductors 10. Hiroshi Katayama-Yoshida, Kazunori Sato, Tetsuya Fukushima, Masayuki Toyoda, Hidetoshi Kizaki and An van Dinh , Osaka University Computational Nano-materials Design for the Wide Band-gap and High-Tc Semiconductor Spintronics 11. Masaaki Tanaka, The University of Tokyo, Properties and functionalities of hybrid and composite structures

Advertisement

advert image