Nonequilibrium Thermodynamics book cover

Nonequilibrium Thermodynamics

Transport and Rate Processes in Physical & Biological Systems

The book begins with a brief review of equilibrium systems and transport and rate processes, then covers the following areas: theory of nonequilibrium thermodynamics; dissipation function; entropy and exergy; analysis and case studies on using the second law of thermodynamics; economic impact of the nonequilibrium thermodynamics theory; analysis of transport and rate processes; membrane transport; dissipative structures and biological systems; and other thermodynamic approaches and extended nonequilibrium thermodynamics.

Audience
For graduate students and researchers working in the following areas: physics, chemistry, biology, chemical engineering, biochemical engineering and biomedical engineering.

Hardbound, 420 Pages

Published: November 2002

Imprint: Elsevier

ISBN: 978-0-444-50886-7

Contents


  • Preface

    1. Equilibrium Thermodynamics

    1.1. Basic Definitions

    1.2. Reversible and Irreversible Processes

    1.3. Equilibrium

    1.3.1. Fundamental Equations

    1.3.2. Thermodynamic Equilibrium

    1.4.1. The Zeroth Law of Thermodynamics

    1.4.2. The First Law of Thermodynamics

    1.4.3. The Second Law of Thermodynamics

    1.4. Thermodynamic Laws

    1.5. Entropy and Entropy Production

    1.6. The Gibbs Equation

    1.7. Equations of State

    1.8. Thermodynamic Potentials

    1.8.1. Cross Relations

    1.8.2. Extremum Principles

    References

    2. Transport and Rate Processes

    Introduction

    2.1. Nonequilibrium Systems

    2.2. Kinetic Approach

    2.3. Transport Phenomena

    2.3.1. Momentum Transfer

    2.3.2. Heat Transfer

    2.3.3. Mass Transfer

    2.4. The Maxwell-Stefan Equations

    2.5. Transport Coefficients

    2.6. Electric Charge Flow

    2.7. The Relaxation Theory

    2.8. Chemical Reactions

    2.9. Coupled Processes

    References

    3. Linear Nonequilibrium Thermodynamics

    Introduction

    3.1. Local Thermodynamic Equilibrium

    3.2. Second Law of Thermodynamics

    3.3. Phenomenological Equations

    3.3.1. Flows and Forces

    3.4. Curie-Prigogine Principle

    3.5. Dissipation Function

    3.6. Variation of Entropy Production

    References

    4. Balance Equations and Entropy Generation

    4.1. Introduction

    4.2. Entropy Generation Equation

    4.1.1. The Mass Balance Equations

    4.1.2. The Momentum Balance Equations

    4.1.3. The Energy Balance Equations

    4.1.4. The Entropy Balance Equations

    References

    5. Entropy and Exergy

    5.1. Entropy

    5.1.1. Entropy Balance

    5.2. Exergy

    5.2.1. Exergy Balance

    5.2.2. Flow Exergy

    5.2.3. Exergetic (Second Law) Efficiency

    5.2.4. Chemical Exergy

    5.2.5. Depletion Number

    References

    6. Using The Second Law of Thermodynamics

    Introduction

    6.1. Second Law Analysis

    6.1.1. Optimization Problem

    6.2. Heat and Fluid Flow

    6.2.1. Case Studies

    6.3. Heat and Mass Transfer

    6.3.1. Case Studies

    6.4. Chemical Reactions and Reacting Flows

    6.4.1. Case Studies

    6.5. Separation

    6.5.1. Extraction

    6.5.2. Distillation

    6.5.3. Case Studies

    References

    7. Thermoeconomics

    Introduction

    7.1. Thermodynamic Analysis

    7.2. Thermodynamic Optimum

    7.2.1. Exergy Analysis

    7.2.2. Exhaustion of Renewable Resources

    7.2.3. Ecological Cost

    7.3. Availability

    7.4. Exergy Destruction Number

    7.5. Equipartition and Optimization

    References

    8. Diffusion

    Introduction

    8.1. Maxwell-Stefan Diffusivity

    8.2. Diffusion in Nonelectrolyte Systems

    8.3. Diffusion in Electrolyte Systems

    8.4. Irreversible Processes in Electrolyte Systems

    References

    9. Heat and Mass Transfer

    Introduction

    9.1. Heat and Mass Transfer

    9.2. Heat of Transport

    9.3. Degree of Coupling

    9.4. Coupling in Liquid Mixtures

    9.4.1. Coupling in Binary Liquid Mixtures

    9.4.2. Coupling in Ternary Liquid Mixtures

    References

    10. Chemical Reactions

    Introduction

    10.1. Dissipation For Chemical Reactions

    10.1.1. Michaelis-Menten Kinetics

    10.2. Coupled Chemical Reactions

    10.2.1. Two-Reaction Coupling

    References

    11. Membrane Transport

    Introduction

    11.1. Passive Transport

    11.1.1. Composite Membranes

    11.1.2. Electrokinetic Effect

    11.2. Facilitated Transport

    11.3. Active Transport

    References

    12. Thermodynamics and Biological Systems

    Introduction

    12.1. Mitochondria

    12.2. Bioenergetics in Mitochondria

    12.3. Oxidative Phosphorylation

    12.4. Proper Pathways

    12.5. Multiple Inflection Points

    12.6. Coupling in Mitochondria

    12.6.1. Variation of Coupling

    12.7. Thermodynamic Regulation in Bioenergetics

    12.7.1. Uncoupling

    12.7.2. Slipping

    12.7.3. Potassium Channels

    12.7.4. Metabolic Control Analysis

    12.8. Facilitated Transport

    12.8.1. Kinetic Formulation

    12.8.2. Nonequilibrium Thermodynamic Approach

    12.9. Active Transport

    12.10. Molecular Evolution

    12.11. Molecular Machines

    12.12. Evolutionary Criterium

    References

    13. Other Thermodynamic Approaches

    Introduction

    13.1. Network Thermodynamics With Bond Graph

    13.1.1. Transport Processes

    13.1.2. Chemical Processes

    13.2. Mosaic in Nonequilibrium Thermodynamics

    13.3. Rational Thermodynamics

    References

    14. Extended Nonequilibrium Thermodynamics

    Introduction

    14.1. Stability

    14.2. Ordering in Physical Structures

    14.2.1. Ordering in Convection

    14.2.2. Ordering in Chemical Reactions

    14.3 Ordering in Biological Structures

    14.3.1. Ordering in Time: Biological Clocks

    14.4. Bifurcation

    14.5. Extended Nonequilibrium Thermodynamics

    References

    Appendix

    Symbols

    Index


Advertisement

advert image