Nonequilibrium Thermodynamics

Transport and Rate Processes in Physical & Biological Systems

By

  • Yasar Demirel, Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, USA
  • Yasar Demirel, Virginia Tech, Virginia, USA

The book begins with a brief review of equilibrium systems and transport and rate processes, then covers the following areas: theory of nonequilibrium thermodynamics; dissipation function; entropy and exergy; analysis and case studies on using the second law of thermodynamics; economic impact of the nonequilibrium thermodynamics theory; analysis of transport and rate processes; membrane transport; dissipative structures and biological systems; and other thermodynamic approaches and extended nonequilibrium thermodynamics.
View full description

Audience

For graduate students and researchers working in the following areas: physics, chemistry, biology, chemical engineering, biochemical engineering and biomedical engineering.

 

Book information

  • Published: November 2002
  • Imprint: ELSEVIER
  • ISBN: 978-0-444-50886-7


Table of Contents


Preface

1. Equilibrium Thermodynamics

1.1. Basic Definitions

1.2. Reversible and Irreversible Processes

1.3. Equilibrium

1.3.1. Fundamental Equations

1.3.2. Thermodynamic Equilibrium

1.4.1. The Zeroth Law of Thermodynamics

1.4.2. The First Law of Thermodynamics

1.4.3. The Second Law of Thermodynamics

1.4. Thermodynamic Laws

1.5. Entropy and Entropy Production

1.6. The Gibbs Equation

1.7. Equations of State

1.8. Thermodynamic Potentials

1.8.1. Cross Relations

1.8.2. Extremum Principles

References

2. Transport and Rate Processes

Introduction

2.1. Nonequilibrium Systems

2.2. Kinetic Approach

2.3. Transport Phenomena

2.3.1. Momentum Transfer

2.3.2. Heat Transfer

2.3.3. Mass Transfer

2.4. The Maxwell-Stefan Equations

2.5. Transport Coefficients

2.6. Electric Charge Flow

2.7. The Relaxation Theory

2.8. Chemical Reactions

2.9. Coupled Processes

References

3. Linear Nonequilibrium Thermodynamics

Introduction

3.1. Local Thermodynamic Equilibrium

3.2. Second Law of Thermodynamics

3.3. Phenomenological Equations

3.3.1. Flows and Forces

3.4. Curie-Prigogine Principle

3.5. Dissipation Function

3.6. Variation of Entropy Production

References

4. Balance Equations and Entropy Generation

4.1. Introduction

4.2. Entropy Generation Equation

4.1.1. The Mass Balance Equations

4.1.2. The Momentum Balance Equations

4.1.3. The Energy Balance Equations

4.1.4. The Entropy Balance Equations

References

5. Entropy and Exergy

5.1. Entropy

5.1.1. Entropy Balance

5.2. Exergy

5.2.1. Exergy Balance

5.2.2. Flow Exergy

5.2.3. Exergetic (Second Law) Efficiency

5.2.4. Chemical Exergy

5.2.5. Depletion Number

References

6. Using The Second Law of Thermodynamics

Introduction

6.1. Second Law Analysis

6.1.1. Optimization Problem

6.2. Heat and Fluid Flow

6.2.1. Case Studies

6.3. Heat and Mass Transfer

6.3.1. Case Studies

6.4. Chemical Reactions and Reacting Flows

6.4.1. Case Studies

6.5. Separation

6.5.1. Extraction

6.5.2. Distillation

6.5.3. Case Studies

References

7. Thermoeconomics

Introduction

7.1. Thermodynamic Analysis

7.2. Thermodynamic Optimum

7.2.1. Exergy Analysis

7.2.2. Exhaustion of Renewable Resources

7.2.3. Ecological Cost

7.3. Availability

7.4. Exergy Destruction Number

7.5. Equipartition and Optimization

References

8. Diffusion

Introduction

8.1. Maxwell-Stefan Diffusivity

8.2. Diffusion in Nonelectrolyte Systems

8.3. Diffusion in Electrolyte Systems

8.4. Irreversible Processes in Electrolyte Systems

References

9. Heat and Mass Transfer

Introduction

9.1. Heat and Mass Transfer

9.2. Heat of Transport

9.3. Degree of Coupling

9.4. Coupling in Liquid Mixtures

9.4.1. Coupling in Binary Liquid Mixtures

9.4.2. Coupling in Ternary Liquid Mixtures

References

10. Chemical Reactions

Introduction

10.1. Dissipation For Chemical Reactions

10.1.1. Michaelis-Menten Kinetics

10.2. Coupled Chemical Reactions

10.2.1. Two-Reaction Coupling

References

11. Membrane Transport

Introduction

11.1. Passive Transport

11.1.1. Composite Membranes

11.1.2. Electrokinetic Effect

11.2. Facilitated Transport

11.3. Active Transport

References

12. Thermodynamics and Biological Systems

Introduction

12.1. Mitochondria

12.2. Bioenergetics in Mitochondria

12.3. Oxidative Phosphorylation

12.4. Proper Pathways

12.5. Multiple Inflection Points

12.6. Coupling in Mitochondria

12.6.1. Variation of Coupling

12.7. Thermodynamic Regulation in Bioenergetics

12.7.1. Uncoupling

12.7.2. Slipping

12.7.3. Potassium Channels

12.7.4. Metabolic Control Analysis

12.8. Facilitated Transport

12.8.1. Kinetic Formulation

12.8.2. Nonequilibrium Thermodynamic Approach

12.9. Active Transport

12.10. Molecular Evolution

12.11. Molecular Machines

12.12. Evolutionary Criterium

References

13. Other Thermodynamic Approaches

Introduction

13.1. Network Thermodynamics With Bond Graph

13.1.1. Transport Processes

13.1.2. Chemical Processes

13.2. Mosaic in Nonequilibrium Thermodynamics

13.3. Rational Thermodynamics

References

14. Extended Nonequilibrium Thermodynamics

Introduction

14.1. Stability

14.2. Ordering in Physical Structures

14.2.1. Ordering in Convection

14.2.2. Ordering in Chemical Reactions

14.3 Ordering in Biological Structures

14.3.1. Ordering in Time: Biological Clocks

14.4. Bifurcation

14.5. Extended Nonequilibrium Thermodynamics

References

Appendix

Symbols

Index