Macromolecular Crystallography, Part A book cover

Macromolecular Crystallography, Part A

Volume 276: Macromolecular Crystallography, Part A

The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. More than 270 volumes have been published (all of them still in print) and much of the material is relevant even today--truly an essential publication for researchers in all fields of life sciences.

Biochemists, biophysicists, analytical chemists, physical chemists.

Included in series
Methods in Enzymology

Hardbound, 700 Pages

Published: February 1997

Imprint: Academic Press

ISBN: 978-0-12-182177-7


  • "The Methods in Enzymology series represents the gold-standard."
    Praise for the Series, --NEUROSCIENCE

    "Incomparably useful."
    "It is a true 'methods' series, including almost every detail from basic theory to sources of equipment and reagents, with timely documentation provided on each page."
    "The series has been following the growing, changing and creation of new areas of science. It should be on the shelves of all libraries in the world as a whole collection."
    "The appearance of another volume in that excellent series, Methods in Enzymology, is always a cause for appreciation for those who wish to successfully carry out a particular technique or prepare an enzyme or metabolic intermediate without the tiresome prospect of searching through unfamiliar literature and perhaps selecting an unproven method which is not easily reproduced."
    "If we had some way to find the work most often consulted in the laboratory, it could well be the multi-volume series Methods in Enzymology...a great work."
    "A series that has established itself as a definitive reference for biochemists."


  • Introduction: B.W. Matthews, Recent Transformations in Structural Biology. Crystals: P.C. Weber, Overview of Protein Crystallization Methods. M. Rigs-Kautt and A. Ducruix, Inferences Drawn from Physicochemical Studies of Crystallogenesis and Precrystalline State. L. Song and J.E. Gouaux, Membrane Protein Crystallization: Application of Sparse Matrix to alpha-Hemolysin Heptamer. C.W. Carter, Jr., Response Surface Methods for Optimizing and Improving Reproducibility of Crystal Growth. A. George, Y. Chiang, B. Guo, A. Arabshahi, Z. Cai, and W.W. Wilson, Second Virial Coefficient as Predictor in Protein Crystal Growth. J.R. Luft and G.T. DeTitta, Kinetic Aspects of Macromolecular Crystallization. R. Sousa, Using Cosolvents to Stabilize Protein Conformation for Crystallization. C.E. Kundrot, Preparation and Crystallization of RNA: A Sparse Matrix Approach. A.R. Ferre-Damare and S.K. Burley, Dynamic Light Scattering in Evaluating Crystallizability of Macromolecules. A.M. Edwards, S.A. Darst, S.A. Hemming, F.J. Asturias, P.R. David, and R.D. Kornberg, Two-Dimensional Protein Crystals in Aid of Three-Dimensional Protein Crystal Growth. I. Rayment, Reductive Alkylation of Lysine Residues to Alter Crystallization Properties of Proteins. Data: Cryocrystallography: D. Rodgers, Practical Cryocrystallography. J.R. Helliwell, Overview of Synchrotron Radiation and Macromolecular Crystallography. Z.R. Korszun, Neutron Macromolecular Crystallography. Detectors:Y. Amemiya, X-Ray Storage-Phosphor Imaging-Plate Detectors: High-Sensitivity X-Ray Area Detector. E.M. Westbrook and I. Naday, Charge-Coupled Device-Based Area Detectors. R. Kahn and R. Fourme, Gas Proportional Detectors. Data Collection Software:J.W. Pflugrath, Diffraction-Data Processing for Electronic Detectors: Theory and Practice. Z. Otwinowski and W. Minor, Processing of X-Ray Diffraction Data Collected in Oscillation Mode. Z. Dauter, Data Collection Strategy. T.O. Yeates, Detecting and Overcoming Crystal Twinning. Phases: Basic Concepts:G. Bricogne, Bayesian Statistical Viewpoint on Structure Determination: Basic Concepts and Examples. G. Bricogne, Efficient Sampling Methods for Combinations of Signs, Phases, Hyperphases, and Molecular Orientations. H. Ke, Overview of Isomorphous Replacement Phasing. M.A. Rould, Screening for Heavy-Atom Derivatives and Obtaining Accurate Isomorphous Differences. E. de La Fortelle and G. Bricogne, Maximum-Likelihood Heavy-Atom Parameter Refinement for Multiple Isomorphous Replacement and Multiwavelength Anomalous Diffraction Methods. Multiwavelength Methods:W.A. Hendrickson and C.M. Ogata, Phase Determination by Multiwavelength Anomalous Diffraction Methods. S. Doublie, Preparation of Selenomethionyl Proteins for Phase Determination. T.C. Terwilliger, Multiwavelength Anomalous Diffraction Phasing of Macromolecular Structures: Analysis of MAD Data as Single Isomorphous Replacement with Anomalous Scattering Data Using MADMRG Program. V. Ramakrishnan and V. Biou, Treatment of Multiwavelength Anomalous Diffraction Data as a Special Case of Multiple Isomorphous Replacement. Molecular Replacement:A.T. Branger, Patterson Correlation Searches and Refinement. J. Navaza and P. Saludjian, AMoRe: An Automated Molecular Replacement Program Package. L. Tong and M. Rossmann, Rotation Function Calculations with GLRF Program. G.A. Bentley, Phased Translation Function. Horizon MethodsJ.M. Berg and N.W. Goffeney Centrosymmetric Crystals of Biomolecules: The Racemate Method. G.M. Sheldrick, Patterson Superposition and ab Initio Phasing. A.D. Podjarny and A.G. Urzhumtsev, Low-Resolution Phasing. Author


advert image