Lean Combustion

Technology and Control

Edited by

  • Derek Dunn-Rankin, Professor of Mechanical and Aerospace Engineering, University of California, Irvine

Combustion under sufficiently fuel-lean conditions can have the desirable attributes of high efficiency and low emissions, this being particularly important in light of recent and rapid increases in the cost of fossil fuels and concerns over the links between combustion and global climate change. Lean Combustion is an eminently authoritative, reference work on the latest advances in lean combustion technology and systems. It will offer engineers working on combustion equipment and systems both the fundamentals and the latest developments in more efficient fuel usage and in much-sought-after reductions of undesirable emissions, while still achieving desired power output and performance. This volume brings together research and design of lean combustion systems across the technology spectrum in order to explore the state-of-the-art in lean combustion and its role in meeting current and future demands on combustion systems. Readers will learn about advances in the understanding of ultra lean fuel mixtures and how new types of burners and approaches to managing heat flow can reduce problems often found with lean combustion such as slow, difficult ignition and frequent flame extinction. The book will also offer abundant references and examples of recent real-world applications.
View full description


Professional Engineers in Mechanical, Automotive, Aerospace, and Chemical Engineering, particularly those involved with combustion engineering, Manufacturing Engineers in the automobile, trucking, aerospace, aeronautical and energy generation industries, Upper Undergraduate and First-year Graduate students in Mechanical, Chemical, Aerospace, and Automotive Engineering, Graduate Students in Chemistry and Physics


Book information

  • Published: August 2007
  • ISBN: 978-0-12-370619-5

Table of Contents

Chapter 1Introduction and Perspectives Derek Dunn-Rankin, Matt M. Miyasato, and Trinh K. Pham1.1 Introduction 1.2 Brief historical perspective 1.3 Defining lean combustion 1.4 Regulatory drivers for lean combustion technologydevelopment 1.5 Lean combustion applications and technologies 1.6 Brief highlights of the chapters Chapter 2Fundamentals of Lean Combustion Derek Bradley2.1 Combustion and engine performance 2.2 Burning in flames 2.3 Autoignitive burning 2.4 Recirculation of heat from burning and burned gas 2.5 Flame stabilization 2.6 Conclusions Chapter 3Highly Preheated Lean Combustion A. Cavaliere, M. de Joannon and R. Ragucci3.1 Introduction 3.2 MILD combustion 3.3 Simple processes in MILD combustion 3.4 Processes and applications of MILD combustion in gasturbines 3.5 Conclusion Chapter 4Lean-Burn Spark-Ignited Internal CombustionEngines Robert Evans4.1 Introduction 4.2 Performance of the ideal internal combustion engine 4.3 Engine combustion and emissions 4.4 Extending the lean limit of operation 4.5 Summary Chapter 5Lean Combustion in Gas Turbines Vince McDonell5.1 Introduction 5.2 Rationale for lean combustion in gas turbines 5.3 Lean gas turbine combustion strategies:status and needs 5.4 Summary Chapter 6Lean Premixed Burners Robert Cheng and Howard Levinsky6.1 Introduction 6.2 Principles of fuel variability 6.3 Stabilization methods 6.4 Summary Chapter 7Stability and Control S. Sivasegaram7.1 Introduction 7.2 Oscillations and their characteristics 7.3 Control strategies 7.4 Concluding remarks Chapter 8Lean Hydrogen Combustion Robert W. Schefer, Christopher White, and Jay Keller8.1 Introduction 8.2 Hydrogen combustion fundamentals 8.3 Hydrogen in gas turbine engines