Introduction to Laser Spectroscopy book cover

Introduction to Laser Spectroscopy

Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented.

Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.

Audience
Undergraduate and graduate students in physics, chemistry, and biology. Researchers and engineers in communications, laser medicine, materials science and other engineering fields.

Hardbound, 384 Pages

Published: May 2005

Imprint: Elsevier

ISBN: 978-0-444-51662-6

Reviews

  • "Introduction to Laser Spectroscopy" by Halina Abramczyk is a thorough introduction to lasers and their applications in spectroscopy and studies of chemical, physical and medical processes. This book fills a void in the prior literature by providing a clear and thorough description of advanced ultrafast laser techniques, especially the theory and application of Raman and photon echo methods...it achieves a level suitable for readers with a reasonable familiarity with the basic concepts of molecular spectroscopy and quantum theory. It is especially useful to those interested in the rapidly growing area of ultrafast laser pulse generation and applications."
    Trevor Smith, School of Chemistry, University of Melbourne, JOURNAL OF PHOTOCHEMISTRY, 2005

Contents

  • 1. Basic Physics of Lasers
    2. Distribution of the Electromagnetic Field in the Optical Resonator
    3. Generation of Ultrashort Laser Pulses
    4. Lasers
    5. Nonlinear Optics
    6. Pulse Amplification
    7. The Measurement of Ultrashort Laser Pulses
    8. Selected Methods of Time-Resolved Laser Spectroscopy
    9. Ultrafast Chemical and Physical Processes
    10. Lasers in Medicine
    11. Potential Hazards Associated with Inappropriate Use of Lasers
    12. Detectors

Advertisement

advert image