Inorganic Polymeric Glasses


  • R.C. Ropp, Warren, NJ, USA

The author describes a novel method of preparing hydrolysis-stable non-silicate glasses which is based on experimental work accomplished over the past twenty years. As such, the method is the beginning of a new approach to glass-making by the use of a molecularly-polymerizable precursor.

The book elucidates the technical details required to produce such molecularly-polymerized glasses from carefully prepared inorganic molecular monomers. Essentially, only silicate-based glasses have been known to be stable, whereas non-silicate glasses could not be attributed with such properties. Such glasses have, therefore, not found widespread usage in industry. The new phosphate glasses described here exhibit stabilities superior to many of the silicate glasses. For example, the nuclear-waste glass shows no measurable loss at all in boiling water, something entirely foreign to the zinc borosilicate glasses developed for nuclear waste encapsulation in the U.S. by Battelle-Northwest.

The exceptional stability of the new glasses is achieved by selecting an inorganic compound capable of being polymerized, and then causing it to polymerize in a proper manner, in the absence of chain-stoppers. To obtain glasses equal or superior in hydrolysis stability to silicate-based systems it is imperative to employ molecular polymerization in situ, starting from carefully prepared precursors of exact stoichiometric proportion.

Researchers in glass and glass properties will find this volume extremely useful and those involved in organic polymers will be intrigued by the similarities and disparities of the two systems.

View full description


Book information

  • Published: May 1992
  • Imprint: ELSEVIER
  • ISBN: 978-0-444-89500-4


The excellent layout makes the text quick and easy to assimilate.
Angewandte Chemie

Table of Contents

1. Introduction to Silicate Glass Technology. Glass and Antiquity. The Glassy or Vitreous State. Glass Formers and Glass Compositions. The Manufacture of Silicate-Based Glasses. Forming and Finishing Operations. Thermal Processing and Properties of Silicate Glasses. Inherent Properties of Glass. Silicate Glass Products Currently being Manufactured. 2. Introduction to Polymeric Glasses. Prior Attempts to Prepare Stable Phosphate Glasses. Structural Units in Glass. Basis for Chain Structure of Polymerized Phosphates. Prior Attempts to Prepare Phosphate Glasses by the Melting of Stoichiometric Compounds. Crystalline Salt Monomers for Stable Phosphate Glass Preparation. 3. Factors Contributing to the Preparation of Stable Phosphate Glasses. Anomalous Recrystallization of Polymeric Calcium Phosphate Glass. Abnormal Strain Relief Behavior of Polymeric [Ca(PO3)2]n Glass. The Effect of Melt Hold Time on Glass Points. Measurement of Hydrolysis Stability of Polymerized Glasses. Effects of Purity and Melt Hold Time on Hydrolysis Stability of Polymerized Glasses. Effect of Melt Hold Time on Melt Viscosity. Effect of Excess H3PO4 on the Reaction Paths of Monobasic Salts. Effect of Ca/P Ratios on Stability of Polymerized Glass Compositions. Other Polymerized Alkaline Earth Phosphate Glasses. Effect of Crucibles Used to Hold the Melt during Polymerization. The Combined Effects of Purity and MHT upon Polymerization. 4. Further Aspects of Polymerized Phosphate Glasses. The Impurity Phase-Segregation Phenomenon. Phase Separation as a Function of M in [CaM(PO3)2]n Glass. Physical Properties of Fully Polymerized Phosphate Glasses. Elimination of Striae and Other Optical Defects. Spectral Properties and Ultraviolet Transparency. Internal Diffusion Mechanisms and Modes of Chemical Attack. Optimal Methods of Purification. Other Inorganic Polymeric Glasses. 5. Uses of Polymeric Phosphate Glasses. Nuclear Waste Sources. History of Glass as a Nuclear Waste Encapsulent. Polymeric Phosphate Glass and Nuclear Waste Encapsulation. Properties of a Polymeric Phosphate Glass Containing Nuclear Waste. Luminescent Polymeric Phosphate Glass and its Applications. Other Potential Uses of Polymeric Glass. Subject Index.