Skip to main content

Save up to 30% on Elsevier print and eBooks with free shipping. No promo code needed.

Save up to 30% on print and eBooks.

In Situ Characterization of Thin Film Growth

  • 1st Edition - October 5, 2011
  • Editors: Gertjan Koster, Guus Rijnders
  • Language: English
  • Hardback ISBN:
    9 7 8 - 1 - 8 4 5 6 9 - 9 3 4 - 5
  • eBook ISBN:
    9 7 8 - 0 - 8 5 7 0 9 - 4 9 5 - 7

Advanced techniques for characterizing thin film growth in situ help to develop improved understanding and faster diagnosis of issues with the process. In situ characterization of… Read more

In Situ Characterization of Thin Film Growth

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

Institutional subscription on ScienceDirect

Request a sales quote
Advanced techniques for characterizing thin film growth in situ help to develop improved understanding and faster diagnosis of issues with the process. In situ characterization of thin film growth reviews current and developing techniques for characterizing the growth of thin films, covering an important gap in research.Part one covers electron diffraction techniques for in situ study of thin film growth, including chapters on topics such as reflection high-energy electron diffraction (RHEED) and inelastic scattering techniques. Part two focuses on photoemission techniques, with chapters covering ultraviolet photoemission spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and in situ spectroscopic ellipsometry for characterization of thin film growth. Finally, part three discusses alternative in situ characterization techniques. Chapters focus on topics such as ion beam surface characterization, real time in situ surface monitoring of thin film growth, deposition vapour monitoring and the use of surface x-ray diffraction for studying epitaxial film growth.With its distinguished editors and international team of contributors, In situ characterization of thin film growth is a standard reference for materials scientists and engineers in the electronics and photonics industries, as well as all those with an academic research interest in this area.