Handbook of Infra-red Detection Technologies book cover

Handbook of Infra-red Detection Technologies

The use of lasers which emit infra-red radiation and sophisticated detectors of IR radiation is increasing dramatically: they are being used for long-distance fibre-optic communications and remote environmental monitoring and sensing. Thus they are of interest to the telecommunications industry and the military in particular. This book has been designed to bring together what is known on these devices, using an international group of contributors.

Audience
Those involved in the design, manufacture and processing of Infra-red devices; materials manufacture and use in corporate, government and academic facilities world-wide.

Hardbound, 532 Pages

Published: December 2002

Imprint: Elsevier

ISBN: 978-1-85617-388-9

Contents

  • Chapter 1 - Introduction (M. Henini, M.Razeghi)

    Chapter 2 - Comparison of photon and thermal detector performance (A. Rogalski)
    2.1 Introduction
    2.2 Fundamental limits to infrared detector performance
    2.2.1 Photon detectors
    2.2.2 Thermal detectors
    2.2.3 Comparison of the fundamental limits of photon and thermal detectors
    2.3 Focal plane array performance
    2.4 FPAs of photon detectors
    2.4.1 InSb photodiodes
    2.4.2 HgCdTe photodiodes
    2.4.3 Photoemissive PtSi Schottky-barrier detectors
    2.4.4 Extrinsic photoconductors
    2.4.5 GaAs/AIGaAs QWIPs
    2.4.6 QWIP versus HgCdTe in the LWIR spectral region
    2.5 Dual-band FPAs
    2.5.1 Dual-band HgCdTe
    2.5.2 Dual-band QWIPs
    2.6 FPAs of thermal detectors
    2.6.1 Micromachined silicon bolometers
    2.6.2 Pyroelectric arrays
    2.6.3 Thermoelectric arrays
    2.6.4 Status and trends of uncooled arrays
    2.7 Conclusions
    Appendix
    References

    Chapter 3 - GaAs/AIGaAs based quantum well intrared photodetector focal plane arrays (S.D. Gunapala, S.V. Bandara)
    3.1 Introduction
    3.2 Detectivity D* comparison
    3.3 Effect of nonuniformity
    3.4 640x512 pixel long-wavelength portable QWIP camera
    3.5 640x486 long-wavelength dual-band imaging camera
    3.6 640x512 pixel broad-band QWIP imaging camera
    3.7 640x512 spatially separated four-band QWIP focal plane array
    3.8 QWIPs for low background and low temerature operation
    3.9 Summary
    Acknowledgements
    References

    Chapter 4 - GaInAs(P) based QWIPs on GaAs, InP and Si substrates for focal plane arrays (J. Jaing, M. Razeghi)
    4.1 Introduction
    4.1.1 Overview of infrared detector
    4.1.2 Quantum well infrared photodetector
    4.1.3 State-of-the-art
    4.2 Fundamentals of QWIP
    4.2.1 Intersubband absorption
    4.2.2 QWIP parameters
    4.2.3 Comparison of n-type and p-type QWIPs
    4.2.4 Growth, fabrication and device characterization of a single QWIP device
    4.3 Fabrication of infrared FPA
    4.3.1 Infrared FPA fabrication steps
    4.3.2 Indium solder bump fabrication steps
    4.3.3 ROIC for infrared FPA
    4.4 p-type QWIPS
    4.4.1 p-type MWIR QWIPS
    4.4.2 p-type LWIR QWIPS
    4.5 n-type QWIPS
    4.5.1 n-type LWIR QWIPS
    4.5.2 n-type VLWIR QWIPS
    4.5.3 Multi-colour QWIPS
    4.6 Low Cost QWIP FPA integrated with Si substrate
    4.6.1 Overview of QWIPs on Si
    4.6.2 Growth of GaInAs/InP QWIP-on-Si
    4.6.3 Detector performance of GaInAs/InP QWIP-on-Si
    4.6.4 How to fabricate a monolithic integrated FPA with Si substrate
    4.7 New approaches of QWIP
    4.8 Conslusions
    References

    Chapter 5 - InAs/(Galn)Sb superlattices: a promising material system for infrared detection (L. Burkle, F. Fuchs)
    5.1 Introduction
    5.2 Materials properties
    5.2.1 Bandstructure of InAs/(BaIn)Sb superlattices
    5.2.2 X-ray characterization
    5.2.3Interfaces
    5.2.4 Sample homogeneity
    5.2.5 Residual doping
    5.3 Superlattice photodiodes
    5.3.1 Diode structure
    5.3.2 Diode processing
    5.3.3 Photo response
    5.3.4 I-V measurements
    5.3.5 C-V measurements
    5.3.6 Noise measurement
    5.4 Summary and outlook
    References

    Chapter 6 - GaSb/InAs superlattices for infrared FPAs (M. Razeghi, H. Mohseni)
    6.1 Type-II heterostructures
    6.1.1 Historical review
    6.1.2 Definition of type-II band alignment
    6.1.3 Features of type-II band alignment and their applications
    6.2 Type-II infrared detectors
    6.2.1 Principle of operation
    6.2.2 Band structure of type-II superlattices
    6.2.3 Optical absorption in type-II superlattices
    6.2.4 Modeling and simulation of type-II superlattices
    6.3 Experimental results from type-II photoconductors
    6.3.1 Uncooled type-II photoconductors in the &lgr;=8-12 &mgr;m range
    6.3.2 Cooled type-II photoconductors for &lgr; ⩽ 20 &mgr;m
    6.4 Experimental results from type-II photodiodes
    6.4.1 Uncooled type-II photodiodes in the &lgr;=8-12 &mgr;m range
    6.4.2 Cooled type-II photodiodes in the &lgr; ⩽ 14 &mgr;m range
    6.5 Future work
    References

    Chapter 7 - MCT properties, growth methods and characterization (R.E. Longshore)
    7.1 Preface
    7.2 Introduction
    7.2.1 Brief history
    7.3 MCT Characteristics and material properties
    7.3.1 Composition and crystal structure
    7.3.2 Bandgap
    7.3.3 Intrinsic carrier concentration
    7.3.4 Doping and impurities
    7.3.5 Carrier mobility
    7.3.6 Carrier lifetime
    7.3.7 Defects
    7.4 MCT crystal growth methods
    7.4.1 Phase diagrams
    7.4.2 Bulk growth
    7.4.3 Expitaxial growth
    7.5 Material characterization methods
    7.5.1 Material composition
    7.5.2 Measurements of carrier concentration and mobility
    7.6 Summary
    References

    Chapter 8 - HgCdTe 2D arrays - technology and performance limits (I.M. Baker)
    8.2 Introduction
    8.1.1 Historical perspective
    8.2 Applications and sensor design
    8.3 Comparison of HgCdTe with other 2D array materials
    8.4 Multiplexers for HgCdTe 2D arrays
    8.4.1 Photocurrent injection techniques
    8.4.2 Scanning architectures
    8.4.3 Future trends
    8.5 Theoretical foundations for HgCdTe array technology
    8.5.1 Thermal diffusion current in HgCdTe
    8.5.2 Leakage currents
    8.5.3 Photocurrent and quantum efficiency
    8.6 Technology of HgCdTe photovoltaic devices
    8.6.1 Materials growth technology
    8.6.2 Junction forming techniques in homojunction arrays
    8.6.3 Device structures
    8.7 Measurements and figures of merit for 2D arrays
    8.7.1 NETD - theoretical calcuation
    8.7.2 NETD - experimental measurement
    8.7.3 Relationship of NETD with other figures of merit
    8.8 HgCdTe 2D arrays for 3-5 &mgr;m (MW) band
    8.9 HgCdTe 2D arrays for 8-12 &mgr;m (LW) band
    8.9.1 Array design issues
    8.9.2 Introduction to performance limitations in LW arrays
    8.9.3 Cause of defective elements in HgCdTe 2D arrays
    8.10 HgCdTe 2D arrays for the 1-3 &mgr;m (SW) band
    8.11 Towards GEN III detectors
    8.11.1 Two-colour array technology
    8.11.2 Higher operating temperature (HOT) device structures
    8.11.3 Retina level processing
    8.12 Conclusion and future trends
    Acknowledgement
    References

    Chapter 9 - Status of HgCdTe MBE technology (T.J. de Lyon, R.D. Rajavel, J.A. Roth, J.E. Jensen)
    9.1 Introduction
    9.2 HgCdTe MBE equipment and process sensors
    9.2.1 Vacuum equipment and sources
    9.2.2 HgCdTe MBE process senosors
    9.3 HgCdTe MBE growth process
    9.3.1 Substrate preparation
    9.3.2 Growth conditions
    9.3.3 Defects
    9.3.4 Doping
    9.4 Device applications
    9.4.1 Multispectral HgCdTe infrared detectors
    9.4.2 Near-infrared avalanche photodiodes
    9.4.3 High-performance MWIR detectors
    9.4.4 Large-format arrays on silicon substrates
    Acknowledgements
    References

    Chapter 10 - Silicon infrared focal plane arrays (M. Kimata)
    10.1 Introduction
    10.2 Cooled FPAs
    10.2.1 Schottky-barrier FPAs
    10.2.2 Heterojunction internal photoemission FPAs
    10.3 Uncooled FPAs
    10.3.1 Silicon On Insulator (SOI) diode FPAs
    10.3.2 Si-based resistance bolometer FPAs
    10.3.3 Thermopile FPAs
    10.4 Summary
    References

    Chapter 11 - Infrared silicon/germanium detectors (H. Presting)
    11.1 Introduction
    11.2 Near Infrared detector
    11.2.1 General operation principle
    11.2.2 Detector growth and fabrication
    11.2.3 Results and discussion
    11.3. Mid-and long-wavelength SiGe IR detectors
    11.3.1 Introduction
    11.3.2 Principle of operation of HIP detectors
    11.3.3 Growth and material characterization
    11.3.4 Experimental results and discussion
    11.3.5 Calculation of optical properties of SiGe HIP detectors
    11.3.6 Résumeé and outlook for SiGe MWIR detectors
    Acknowledgements
    References

    Chapter 12 - PolySiGe uncooled microbolometers for thermal IR detection (C. Van Hoof, P. De Moor)
    12.1 Introduction
    12.1.1 Uncooled resistive microbolometers
    12.1.2 Microbolometer terminology
    12.1.3 Microbolometer process options
    12.2 Structural, thermal and electrical properties of polySiGe
    12.2.1 Deposition of polySiGe
    12.2.2 Structural properties
    12.2.3 Thermal properties
    12.2.4 Electrical properties
    12.2.5 High-temperature vs. low-temperature polySiGe
    12.3 PolySiGe bolometer pixel
    12.3.1 Process development
    12.3.2 Absorber comparison and trade-offs
    12.3.3 Pixel optimization
    12.3.4 Vapor HF processing
    12.3.5 Stiffness enhancement techniques
    12.4 Readout and system development
    12.4.1 Introduction
    12.4.2 Readout of polySiGe bolometer arrays
    12.5 Zero-level vacuum packaging
    12.5.1 Introduction
    12.5.2 Indent-Reflow Sealing using metal solder
    12.5.3 Zero-level packaging using BCB
    12.5.4 Hermeticity testing using microbolometers
    12.6 Conclusions and outlook
    Acknowledgements
    References

    Chapter 13 - Fundamentals of spin filtering in ferromagnetic metals with application to spin sensors (H.J. Drouhin)
    13.1 Introduction
    13.2 Theoretical IMFP variation
    13.2.1 The simplest model - mathematical bases of the calculation
    13.2.2 A more complete treatment
    13.2.3 An intuitive derivation
    13.2.4 Comparison with the Schönhense and Siegmann model
    13.3 Experimental study of ▴ &sgr;
    13.4 Spin precession and spin filters
    13.4.1 Density-operator formalism
    13.4.2 Electron transmission through ferromagnetic bilayers
    13.4.3 The bilayer with collinear magnetizations
    13.4.4 The bilayer with perpendicular magnetizations
    13.5 Discussion and conclusion
    Acknowledgements
    References

Advertisement

advert image