Game Theory and Learning for Wireless Networks book cover

Game Theory and Learning for Wireless Networks

Fundamentals and Applications

* The first tutorial-style book that gives all the relevant theory at the right level of rigor, for the wireless communications engineer.

* Bridges the gap between theory and practice by giving examples and case studies showing how game theory can solve real-word problems.

* Contains algorithms and techniques to implement game theory in wireless terminals.

Written by leading experts in the field, Game Theory and Learning for Wireless Networks Covers how theory can be used to solve prevalent problems in wireless networks such as power control, resource allocation or medium access control. With the emphasis now on promoting ‘green’ solutions in the wireless field where power consumption is minimized, there is an added focus on developing network solutions that maximizes the use of the spectrum available.

With the growth of distributed wireless networks such as Wi-Fi and the Internet; the push to develop ad hoc and cognitive networks has led to a considerable interest in applying game theory to wireless communication systems. Game Theory and Learning for Wireless Networks is the first comprehensive resource of its kind, and is ideal for wireless communications R&D engineers and graduate students.

Samson Lasaulce is a senior CNRS researcher at the Laboratory of Signals and Systems (LSS) at Supélec, Gif-sur-Yvette, France. He is also a part-time professor in the Department of Physics at École Polytechnique, Palaiseau, France.

Hamidou Tembine is a professor in the Department of Telecommunications at Supélec, Gif-sur-Yvette, France.

Merouane Debbah is a professor at Supélec, Gif-sur-Yvette, France. He is the holder of the Alcatel-Lucent chair in flexible radio since 2007.


University researchers and R&D engineers in the industry, graduate and PhD students in wireless communications

Hardbound, 336 Pages

Published: August 2011

Imprint: Academic Press

ISBN: 978-0-12-384698-3


  • Preface and Introduction.

    Part A Games with Complete Information

    A1 A short tour of game theory

    A2 Playing with equilibria in wireless non-cooperative games

    A3 Moving from static to dynamic game

    A4 Coalitional games

    Part B Games with complete information and learning

    B1 Bayesian games

    B2 Partially distributed learning algorithms

    B3 Fully distributed learning algorithms

    Part C Case Studies

    C1 Fundamentals of wireless communications

    C2 Energy-efficient power control games

    C3 Rate-efficient power allocation games

    C4 Medium access control games

    Part D Appendices

    Bibliography and index


advert image