Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications


  • Lanru Jing, Royal Institute of Technology, Stockholm, Sweden
  • Ove Stephansson, Royal Institute of Technology, Stockholm, Sweden

This book presents some fundamental concepts behind the basic theories and tools of discrete element methods (DEM), its historical development, and its wide scope of applications in geology, geophysics and rock engineering. Unlike almost all books available on the general subject of DEM, this book includes coverage of both explicit and implicit DEM approaches, namely the Distinct Element Methods and Discontinuous Deformation Analysis (DDA) for both rigid and deformable blocks and particle systems, and also the Discrete Fracture Network (DFN) approach for fluid flow and solute transport simulations. The latter is actually also a discrete approach of importance for rock mechanics and rock engineering. In addition, brief introductions to some alternative approaches are also provided, such as percolation theory and Cosserat micromechanics equivalence to particle systems, which often appear hand-in-hand with the DEM in the literature. Fundamentals of the particle mechanics approach using DEM for granular media is also presented.
View full description


Researchers and advanced undergraduate and graduate students with an emphasis in rock mechanics, rock physics, civil engineering, engineering geology, environmental engineering, petroleum engineering, and nuclear waste management.


Book information

  • Published: July 2007
  • Imprint: ELSEVIER
  • ISBN: 978-0-444-82937-5

Table of Contents

Foreword. Preface. 1. Introduction. Part 1: Fundamentals. 2. Governing equations for motion and deformation of block systems and heat transfer. 3. Constitutive models of rock fractures and rock masses - the basics. 4. Fluid flow and coupled hydro-mechanical behaviour of rock fractures. Part 2: Fracture System Characterization and Block Model Construction. 5. Basics of characterization of fracture systems - field mapping and stochastic simulations. 6. Basics of combinatorial topology for block system representation. 7. Numerical techniques for block system construction. Part 3: DEM approaches. 8. Explicit discrete element method for block systems – the distinct element method. 9. Implicit Discrete Element Method for block systems – discontinuous deformation analysis (DDA). 10. Discrete Fracture Network (DFN) method. 11. Discrete Element Methods for granular materials. Part 4: Application Studies. 12. Case studies of Discrete Element Methods in geology, geophysics and rock engineering. Appendix. Subject Index.