Fundamentals of Atmospheric Physics

Series Editor:

  • Roger Pielke, Colorado State University at Fort Collins, U.S.A.
  • Renata Dmowska, Harvard University, Cambridge, MA, USA


  • Murry Salby, University of Colorado, Boulder, Colorado

Fundamentals of Atmospheric Physics emphasizes the interrelationships of physical and dynamical meteorology. The text unifies four major subject areas: atmospheric thermodynamics, hydrostatic equilibrium and stability, atmospheric radiation and clouds, and atmospheric dynamics. These fundamental areas serve as cornerstones of modern atmospheric research on environmental issues like global change and ozone depletion. Physical concepts underlying these subject areas are developed from first principles, providing a self-contained text for students and scholars from diverse backgrounds.The presentation is Lagrangian (single-body problems) in perspective, with a balance of theory and application. Each chapter includes detailed and extensive problems; selected answers are provided, as are appendices of various constants. The text requires a thorough foundation in calculus.
View full description


This book is directed at first-year graduate students entering atmospheric or planetary science with diverse backgrounds in physics, chemistry, mathematics, or engineering, but not necessarily having formal training in thermodynamics, radiation, and fluid mechanics. The material can be digested by undergraduate seniors with similar preparation.


Book information

  • Published: May 1996
  • ISBN: 978-0-12-615160-2


"[In the opinion of the reviewer]the book is an example of a very well conceived and written textbook...General layout of the material is clear, illustrations are well selected and from a didactic point of view the aim of unification of traditional physical and dynamical meteorology has been successfully achieved. It can be recommended as a basic or supporting lecture both for students as well as professionals who would like to examine their field from a slightly different point of view."
--Krzysztof Haman, Warsaw University, PURE APPLIED GEOPHYSICS

Table of Contents

A Global View: Introduction to the Atmosphere. Composition and Structure. Radiative Equilibrium of the Planet. The Global Energy Budget. The General Circulation. Thermodynamics of Gases: Thermodynamic Concepts. TheFirst Law. Heat Capacity. Adiabatic Processes. Diabatic Processes. The Second Law and Its Implications: Natural and Reversible Processes. Entropy and the Second Law. Restricted Forms of the Second Law. The Fundamental Relations. Conditions for Thermodynamic Equilibrium. Relationship of Entropy to Potential Temperature. Heterogeneous Systems: Description of a Heterogeneous System. Chemical Equilibrium. Fundamental Relations for a Multicomponent System. Thermodynamic Degrees of Freedom. Thermodynamic Characteristics of Water. Equilibrium Phase Transformations. Transformations of Moist Air: Description of Moist Air. Implications for the Distribution of Water Vapor. State Variables of the Two-Component System. Thermodynamic Behavior Accompanying Vertical Motion. The Pseudo-Adiabatic Chart.Hydrostatic Equilibrium: Effective Gravity. Geopotential Coordinates. Hydrostatic Balance. Stratification. Lagrangian Interpretation of Stratification. Hydrostatic Stability: Reaction to Vertical Displacement. Stability Categories. Implications for Vertical Motion. Finite Displacements. Stabilizing and Destabilizing Influences. Turbulent Dispersion. Atmospheric Radiation: Shortwave and Longwave Radiation. Description of Radiative Transfer. Absorption Characteristics of Gases. Radiative Transfer in a Plane Parallel Atmosphere. Thermal Equilibrium. Thermal Relaxation. The Greenhouse Effect. Aerosol and Clouds: Morphology of Atmospheric Aerosol. Microphysics of Clouds. Macroscopic Characteristics of Clouds. Radiative Transfer in Aerosol and Cloud. Roles of Clouds and Aerosol in Climate. Atmospheric Motion: Descriptions of Atmospheric Motion. Kinematics of Fluid Motion. The Material Derivative. Reynolds Transport Theorem. Conservation of Mass. The Momentum Budget. The First Law of Thermodynamics. Atmospheric Equations of Motion: Curvilinear Coordinates. Spherical Coordinates. Special Forms of Motion. Prevailing Balances. Thermodynamic Coordinates. Large-Scale Motion:Geostrophic Equilibrium. Vertical Shear of the Geostrophic Wind. Frictional Geostrophic Motion. Curvilinear Motion. Weakly Divergent Motion. The Planetary Boundary Layer: Description of Turbulence. Structure of the Boundary Layer. Influence of Stratification. Ekman Pumping. Atmospheric Waves: Description of Wave Propagation. Acoustic Waves. Buoyancy Waves. The Lamb Wave. Rossby Waves. Wave Absorption. Nonlinear Considerations. The General Circulation: Forms of Atmospheric Energy. Heat Transfer in an Axisymmetric Circulation. Heat Transfer in a Laboratory Analogue. Tropical Circulations. Hydrodynamic Instability: Inertial Instability. Shear Instability. The Eady Problem. Nonlinear Considerations. The Middle Atmosphere: Ozone Photochemistry. Involvement of Other Species. Air Motion. Sudden Stratospheric Warmings. The Quasi-Biennial Oscillation. Direct Interactions with the Troposphere. Heterogeneous Chemical Reactions. Appendix A: Conversion to SI Units. Appendix B:Thermodynamic Properties of Air and Water. Appendix C: Physical Constants. Appendix D: Vector Identities. Appendix E: Curvilinear Coordinates. Appendix F: Pseudo-Adiabatic Chart. References. Answers to Selected Problems. Subject Index.