Flight Dynamics and System Identification for Modern Feedback Control

Avian-Inspired Robots


  • Jared Grauer, NASA Langley Research Center
  • James Hubbard Jr., University of Maryland and National Institute of Aerospace, USA

Unmanned air vehicles are becoming increasingly popular alternatives for private applications which include, but are not limited to, fire fighting, search and rescue, atmospheric data collection, and crop surveys, to name a few. Among these vehicles are avian-inspired, flapping-wing designs, which are safe to operate near humans and are required to carry payloads while achieving manoeuverability and agility in low speed flight. Conventional methods and tools fall short of achieving the desired performance metrics and requirements of such craft. Flight dynamics and system identification for modern feedback control provides an in-depth study of the difficulties associated with achieving controlled performance in flapping-wing, avian-inspired flight, and a new model paradigm is derived using analytical and experimental methods, with which a controls designer may then apply familiar tools. This title consists of eight chapters and covers flapping-wing aircraft and flight dynamics, before looking at nonlinear, multibody modelling as well as flight testing and instrumentation. Later chapters examine system identification from flight test data, feedback control and linearization.
View full description


Practicing engineers and researchers in aerospace and mechanical engineering interested in flapping-wing or new and exotic aircraft configurations


Book information

  • Published: August 2013
  • Imprint: Woodhead Publishing
  • ISBN: 978-0-85709-466-7


"...very clearly written and is quite readable. The authors are clearly leading experts in the field...strongly recommended to readers interested in the subject."--The Aeronautical Journal, February 2015

"Aerospace engineers Grauer…and Hubbard…describe an ornithopter they designed, built, and tested. An ornithopter flies by flapping wings like a bird. They cover ornithopter test platform characterizations, rigid multi-body vehicle dynamics, system identification of aerodynamic models, and simulation results."--ProtoView.com, February 2014

Table of Contents

Ornithopter test platform characterizations; Rigid multibody vehicle dynamics; System identification of aerodynamic models; Simulation results.