Fish Physiology: Hypoxia book cover

Fish Physiology: Hypoxia

Periods of environmental hypoxia (Low Oxygen Availability) are extremely common in aquatic systems due to both natural causes such as diurnal oscillations in algal respiration, seasonal flooding, stratification, under ice cover in lakes, and isolation of densely vegetated water bodies, as well as more recent anthropogenic causes (e.g. eutrophication). In view of this, it is perhaps not surprising that among all vertebrates, fish boast the largest number of hypoxia tolerant species; hypoxia has clearly played an important role in shaping the evolution of many unique adaptive strategies. These unique adaptive strategies either allow fish to maintain function at low oxygen levels, thus extending hypoxia tolerance limits, or permit them to defend against the metabolic consequences of oxygen levels that fall below a threshold where metabolic functions cannot be maintained. The aim of this volume is two-fold. First, this book will review and synthesize the adaptive behavioural, morphological, physiological, biochemical, and molecular strategies used by fish to survive hypoxia exposure and place them within an environmental and ecological context. Second, through the development of a synthesis chapter this book will serve as the cornerstone for directing future research into the effects of hypoxia exposures on fish physiology and biochemistry.

Audience
* Research and Post-graduate scientists studying the physiology of fishes and the impact of extreme and environmentally degraded environments on fish physiology and survival* Comparative Vertebrate Physiologists studying adaptations to oxygen stress* Biomedical and sports physiologists interested in animal models of stress under low oxygen conditions

Included in series
Fish Physiology

Hardbound, 517 Pages

Published: March 2009

Imprint: Academic Press

ISBN: 978-0-12-374632-0

Contents

  • Chapter 1 - THE HYPOXIC ENVIRONMENTRobert J. Diaz and Denise L. BreitburgChapter 2 - BEHAVIOURAL RESPONSES AND ECOLOGICAL CONSEQUENCESLauren J. Chapman and David J. McKenzieChapter 3 - EFFECTS OF HYPOXIA ON FISH REPRODUCTION AND DEVELOPMENT Rudolf WuChapter 4 - OXYGEN AND CAPACITY LIMITED THERMAL TOLERANCEHans O. Pörtner and Gisela LannigChapter 5 - OXYGEN SENSING AND THE HYPOXIC VENTILATORY RESPONSESteve F. Perry, Mike G. Jonz and Kathleen M. GilmourChapter 6 - BLOOD-GAS TRANSPORT AND HAEMOGLOBIN FUNCTION: ADAPTATIONS FOR FUNCTIONAL AND ENVIRONMENTAL HYPOXIA Rufus M.G. WellsChapter 7 - CARDIOVASCULAR FUNCTION AND CARDIAC METABOLISM DURING ENVIRONMENTAL HYPOXIAKurt Gamperl and William R. DriedzicChapter 8 - IMPACTS OF HYPOXIA ON GROWTH AND DIGESTIONTobais Wang, Sjannie Lefevre, Do Thi Thanh houng, Nguyen Van Cong, Mark BayleyChapter 9 - THE ANOXIA-TOLERANT CRUCIAN CARP (CARASSIUS CARASSIUS L.)Matti Vornanen, Jonathan A. W. Stecyk and Göran E. NilssonChapter 10 - METABOLIC AND MOLECULAR RESPONSES OF FISH TO HYPOXIAJeffrey G. RichardsChapter 11 - VOLUME SYNTHESISTony Farrell and Jeffrey G. Richards

Advertisement

advert image