Digital Modeling of Material Appearance book cover

Digital Modeling of Material Appearance

Computer graphics systems are capable of generating stunningly realistic images of objects that have never physically existed. In order for computers to create these accurately detailed images, digital models of appearance must include robust data to give viewers a credible visual impression of the depicted materials. In particular, digital models demonstrating the nuances of how materials interact with light are essential to this capability. This is the first comprehensive work on the digital modeling of material appearance: it explains how models from physics and engineering are combined with keen observation skills for use in computer graphics rendering.Written by the foremost experts in appearance modeling and rendering, this book is for practitioners who want a general framework for understanding material modeling tools, and also for researchers pursuing the development of new modeling techniques. The text is not a "how to" guide for a particular software system. Instead, it provides a thorough discussion of foundations and detailed coverage of key advances.Practitioners and researchers in applications such as architecture, theater, product development, cultural heritage documentation, visual simulation and training, as well as traditional digital application areas such as feature film, television, and computer games, will benefit from this much needed resource.ABOUT THE AUTHORSJulie Dorsey and Holly Rushmeier are professors in the Computer Science Department at Yale University and co-directors of the Yale Computer Graphics Group. François Sillion is a senior researcher with INRIA (Institut National de Recherche en Informatique et Automatique), and director of its Grenoble Rhône-Alpes research center.

Audience
Researchers, engineers, and software developers in computer graphics and game development. Those creating special effects in movies and games (lighting designers, technical directors, researchers, software developers) and those to design work in industries such as automotive, paint, metal, and product design.

Hardbound, 336 Pages

Published: December 2007

Imprint: Morgan Kaufmann

ISBN: 978-0-12-221181-2

Contents

  • Contents Chapter 1 Introduction Chapter 2 Background LightHuman Perception and Judgments Luminance and Brightness Color Directional Effects Textures and Patterns Image Synthesis Shape Incident LightMaterialSummary and Further Reading Chapter 3 Observation and Classification A Tour of Materials Examples of Modeling Classes of Materials Chapter 4 Mathematical Terms Energy as a Function of Time, Position, and DirectionPosition Direction Radiance Reflectance and the BRDF Distribution Functions Energy Conservation and the BRDF Reciprocity and the BRDF Chapter 5 General Material Models Reflection and Refraction from a Smooth Surface Empirical Models Lambertian Reflectance Phong Reflectance Ward Reflectance Lafortune Reflectance Ashikhmin-Shirley Anisotropic Phong Reflectance Analytical First Principles Models Micro-facet DistributionsModels Based on Geometric Optics Blinn and Cook-Torrance Reflectance Oren-Nayar Reflectance Models Based on Wave Optics Simulation from First Principles Spectral Effects Other Effects Polarization Phosphorescence and Fluorescence Scattering in VolumesMeasured Properties Solid Volumetric Media: Subsurface Scattering Spatial Variations Chapter 6 Specialized Material Models Natural Organic Materials Humans and Other Mammals Birds, Reptiles, Amphibians, Fish and Insects Plants Natural: InorganicPorous Materials Water in Other Materials: Wet/Dry Appearance Snow Materials in Manufactured Goods Fabrics Paints, Coatings and Artistic MediaGems Chapter 7 Measurement Traditional Measurement Gonio reflectometers Nephelometers Industrial Measurement Devices Image-Based BRDF Measurements of Sample Materials Cameras as SensorsMeasuring Prepared Homogeneous Material Samples Measurement of Existing ObjectsLarge Objects and Buildings Simultaneous Shape and Reflectance Capture Small Scale Geometric Structures Normal and Bump Maps Bidirectional Texture Functions Alternative RepresentationsSubsurface Scattering and Volumetric MediaAdditional Dimensions Chapter 8 Aging and Weathering Weathering Taxonomy Chemical Mechanical BiologicalCombined Processes Simulation of Weathering EffectsPatination Impacts Scratches Cracking Flow and Deposition Dust Accumulation Weathering Systems Replication of Aged Appearance Manual Application Accessibility Shading/Ambient Occlusion Capture, Analysis, and Transfer of Effects Chapter 9 Specifying and encoding appearance descriptions Practical techniques for appearance specification Visual interfaces for analytic models3DPainting Textual and programming interfaces Composition from basic building blocks Encoding local appearance attributes Parameterized models Tabular dataBasis functions Association of material and shape Discussion of surface parameterization Representation of light and view-dependence Chapter 10 Rendering appearance An overview of image creation techniques Object projection techniques Image sampling techniquesLocal and global calculationsSimulating global illumination Monte Carlo evaluation of the rendering equation Caching mechanisms Finite elements methods Rendering local appearanceTexture mapping and detail management BRDF and BTF sampling Subsurface scattering and participating media Color and tone Spectral rendering Dynamic range and tone mapping Precomputed rendering elements

Advertisement

advert image