Biohydrometallurgy and the Environment Toward the Mining of the 21st Century book cover

Biohydrometallurgy and the Environment Toward the Mining of the 21st Century

The major theme of the International Biohydrometallurgy Symposium IBS-99 'Biohydrometallurgy and the Environment toward the mining of the 21st Century', held in El Escorial (Spain) from 20-23 June 1999, is biohydrometallurgy and the environment since it is predicted that in the coming century biotechnology will make its greatest contribution in this area. From the papers in these volumes it is clear that environmental issues are already of great interest to the biohydrometallurgical community.
Although all the classical biohydrometallurgical topics - e.g. bioleaching, microbiology, molecular biology, biosorption, bioremediation - are addressed, the continued emphasis is on the environmentally friendly aspects of the biotechnologies used.
Given the interdisciplinary nature of the field, biologists, hydrometallurgists, geologists, chemists, physicists and engineers should be interested in this collection of papers which discuss the future trends in biohydrometallurgy.

Included in series
Process Metallurgy

,

Published: May 1999

Imprint: Elsevier

ISBN: 978-0-444-50193-6

Contents

  • VOLUME A: Bioleaching, Microbiology. Chapter 1 Bioleaching. Past, present and future of biohydrometallurgy (Ehrlich, H. L.). Chemical and electrochemical basis of bioleaching processes (Hansford, G. S., Vargas, T.). Direct versus indirect bioleaching (Sand,W., Gehrke, T., Jozsa, P.-G., Schippers, A.). Direct versus indirect bioleaching (Tributsch, H.).The design of bioreactors(Rossi, G.). Present and future commercial applications of biohydrometallutgy (Brierley, J. A., Brierley, C. L.). Bacterial succession in bioheap leaching (Brierley, C. L.). Semi-continuous bioleaching of heavy metals and trace elements from coal (Aller, A., Cara, J., Martínez, O., Morán, A.). Mineralogical factors affecting arsenopyrite oxidation rate during acid ferric sulphate and bacterial leaching of refractory gold ores(Andrews, L., Merkle, R. K. W.). Acid-bacterial leaching of pyrite single crystal (Aoki, A.). Adsorption of Bacillus subtilis to minerals: Effects on the flotation of dolomite and apatite (Zheng, X., Arps, P. J., Smith, R. W.). Bioleaching behaviour of chalcopyrite in the presence of silver at 35° and 68°C (Blazquez, M. L., Alvarez, A., Ballester, A., González, F., Muñoz, J. A.). Bioleaching of a copper sulphide flotation concentrate using mesophilic and thermophilic microorganisms(Rivera, R. E., Ballester, A., Blázquez, M. L., González, F.). Influence of thermophilic microorganisms on the electrochemical behaviour of pyrite (González, J. L., Ballester, A., Blázquez, M. L., González, F.). Bioleaching of a cobaltiferous pyrite at 20% solids: A continuous laboratory-scale study (d'Hugues, P., Cezac, P., Battaglia, F., Morin, D.). Superficial compounds produced by Fe(III) mineral oxidation as essential reactants for bio-oxidation of pyrite by Thiobacillus ferrooxidans (Toniazzo, V., Mustin, C., Benoit, R., Humbert, B., Berthelin, J.). Comparison of chemical leaching and bioleaching of nickel from nickel hydroxide sludge (Chawakitchareon, P., Thiravetyan, P., Ngiemvijawat, T.). A comparison of the bacterial and chemical leaching of sphalerite at the same solution conditions (Driessens, Y. P. M., Fowler, T. A., Crundwell, F. K.). A kinetic study of the leaching of chalcopyrite with Sulfolobus metallicus (Howard, D., Crundwell, F. K.). Comparative copper and zinc bioextraction at various stages of scale up using T. ferrooxidans consortium (Tipre, D. R., Vora, S. B., Dave, S. R.). Bioleaching of base metal sulphide concentrates. A comparison of Mesophile and thermophile bacterial cultures (Dew, D. W., van Buuren, C., McEwan, K., Bowker, C.). Gold solubilisation by the cyanide producing bacteria Chromobacterium violaceum (Lawson, E. N., Barkhuizen, M., Dew, D. W.). A study of adaptation of native iron oxidizing bacteria to thiourea (Diaz, X., Roldan, C.). Leaching of Turkish copper ore samples with Thiobacillus ferrooxidans(Dogan, M. Z., Yüce, A. E., Girgin, S.). Vanadium recovery from solid catalysts by means of thiobacilli action (Briand, L., Thomas, H., Vega, A. de la, Donati, E.). The role of Thiobacillus ferrooxidans in the bacterial leaching of zinc sulphide (Fowler, T. A., Crundwell, F. K.). Oxidative dissolution of covellite by Thiobacillus ferrooxidans (Monteiro, V. F., García Jr., O., Tuovinen, O. H.). Oxidative dissolution of chalcopyrite by Thiobacillus ferrooxidans (Bevilaqua-Mascarin, D., García Jr., O., Tuovinen, O. H.). Biooxidation of an enargite-pyrite gold concentrate in aerated columns (Acevedo, F., Canales, C., Gentina, J. C.). Continuous biooxidation of a refractory gold concentrate (González, R., Gentina, J. C., Acevedo, F.). Microbial leaching of uranium from flotation tailings in alkaline media (Groudeva, V. I., Groudev, S. N.). Chalcopyrite leaching by Thiobacillus ferrooxidans: Effect of shock activation on chalcopyrite surface characteristics and copper solubilization (Guay, R., Inal, O. T., Toniazzo, V., Mustin, C.). Sources of high cyanide consumption for a biooxidized refractory gold concentrate (Jones, L., Hackl, R. P.). Leaching of harbour sediments by estuarine iron-oxidising bacteria (Crane, A. G., Holden, P. J.). Mechanistic study of the pyrite-solution interface during the oxidative bacterial dissolution of pyrite (FeS2) by using electrochemical techniques (Cabral, T., Ignatiadis, I.). Bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi(Konishi, Y., Tokushige, M., Asai, S.). Optimization of metal leaching efficiency of fly ash from municipal solid waste incineration by sulfur oxidizing bacteria (Krebs, W., Bachofen, R., Brandl, H.). Iron (II) oxidation kinetics in Thiobacillus ferrooxidans in the presence of heavy metals (Kupka, D., Kupsáková, I.). Bioleaching of copper and cobal arsenic-bearing ores: a chemical and mineralogical study (Wiertz, J. V., Lunar, R., Maturana, H., Escobar, B.). Laboratory biooxidation tests of arsenopyrite concentrate for the Tamboraque industrial plant (Loayza, C., Ly, M. E., Yupanqui, R., Román, G.). Bacterial oxidation of pure arsenopyrite by a mixed culture (Malatt, K. A.). Pyrite biooxidation: electrochemical and kinetic data (Mandl, M., Zeman, J., Bartakova, I., Vesela, H.). The effect of ore mineralogy on the speciation of arsenic in bacterial oxidation of refractory arsenical gold ores (Nyashanu, R. M., Monhemius, A. J., Buchanan, D. L.). Modelling of bioleaching copper suphide ores in heaps or dumps (Moreno, L., Martinez, J., Casas, J.). Biological leaching of copper mine residues by Aspergillus niger (Mulligan, C. N., Galvez-Cloutier, R., Renaud, N.). Selective biodissolution of calcium and iron from bauxite in the presence of Bacillus polymyxa (Deo, N., Vasan, S. S., Modak, J. M., Natarajan, K. A.). Effects of solid particles on thermophilic bioleaching of sulphide minerals (Nemati, M., Harrison, S. T. L.). Bioleaching of trace elements from U.S. coals by pyrite-oxidizing bacteria (Olson, G. J., Tucker, L.R., Clark, T. R.). Enhanced recovery of silver from Artvin-Kafkasor ore by microbial treatment (Salameh, M., Özcengiz, G., Atalay, Ü., Özbayoglu, G., Alaeddinoglu, G.). Design variables in high efficiency reactors for the biooxidation of ferrous iron in solution (Mazuelos, A., Palencia, I., Romero, R., Rodríguez, G., Carranza, F.). Process options in the treatment of a mixed atacamite, secondary copper sulphides mineral. Heap leaching and BRISA process (Carranza, F., Romero, R., Iglesias, N., Palencia, I.). Interactions of Thiobacillus ferrooxidans with arsenite, arsenate and arsenopyrite (Cassity, W. D., Pesic, B.). Study of the bioleaching of a nickel containing black-schist ore (Riekkola-Vanhanen, M., Heimala, S.). Biohydrometallurgical process kinetics improvements through a combination of bioreactor desing and biochemical environment modulation(Loi, G., Trois, P., Rossi, G.). Microcalorimetric determination of bioleaching activity and temperature dependence (Rohwerder, T., Kahl, A., Wentzien, S., Sand, W.). Microorganisms of kaolins and their role in the processes of iron solubilization and transformation (Shelobolina, E. S., Parfenova, E. Yu., Avakyan, Z. A.). Use of the GEOCOATTM process for the recovery of copper from chalcopyrite (Johansson, C., Shrader, V. J., Suissa, J., Adutwum, K., Kohr, W.). Some interface interactions during copper bioleaching in neutral or slighthy alkaline environment (Sklodowska, A., Matlakowska, R.). The release of sulphidic minerals from uminosilicates by Bacillus strains (Styriakova, I., Styriak, I., Kusnierová, M.). Biochemistry of sulfur extraction in bio-corrosion of pyrite by Thiobacillus ferrooxidans (Rojas-Chapana, J. A., Tributsch, H.). Kinetic analysis of pyrrhotite ore bioleaching by a sulfooxidans strain: Direct and indirect mechanism discrimination (Veglio, F., Beolchini, F., Nardini, A., Toro, L.). Oxygen mass transfer requirements during ferrous iron oxidation by Thiobacillus ferrooxidans under controlled pH conditions (Veljkovic, V. B., Savic, D. S., Lazic, M. L., Vrvic, M. M.). Effects of aireation intensity on pyrite oxidation by Thiobacillus ferrooxidans (Savic, D. S., Veljkovic, V. B., Lazic, M. L., Vrvic, M. M.). Bioleaching of mineral ores in a suspended solid bublbe column (García Ochoa, J., Poncin, S., Morin, D., Wild, G.). Chapter 2. Microbiology. Importance of microbial ecology in the development of new mineral technologies (Johnson, D. B.). Isolation and characterization of mineral oxidizing bacteria from the Obuasi gold mining site, Ghana (Asmah, R. H., Bosompem, K. M., Osei, Y. D., Rodrigues, F. K., Addy, M. E., Clement, C., Wilson, M. D.). Thiobacillus ferrooxidans binds specifically to iron atoms at the exposed edge of the pyrite crystal lattice (Blake II, R., Ohmura, N.). Nickel-resistant bacteria from Cuban laterite soils (Gómez, Y., Coto, O., Capote, J., Abín, L., Perera, J.). Determination of sulfur and iron oxidation bacteria by the most probable number (MPN) technique (Escobar, B., Godoy, I.). Comparison of the effects of temperature and pH on iron oxidation and survival of Thiobacillus ferrooxidans (type strain) and a Leptospirillum ferrooxidans-like isolate (Gómez, J. M., Cantero, D., Johnson, D. B.). Surface chemical and adsorption studies using Thiobacillus ferrooxidans with reference to bacterial adhesion to sulfide minerals (Das, A., Rao, K. H., Sharma, P., Natarajan, K. A., Forssberg, K. S. E.). Acidophilic sulphate-reducing bacteria: Candidates for bioremediation of acid mine drainage (Sen, A. M., Johnson, D. B.). A novel metabolic phenotype among acidiphilic bacteria: Aromatic Degradation and the potential use of these orgenisms for the treatment of wastewater containing organic and inorganic pollutants(Hallberg, K. B., Kolmert, A. K., Johnson, D. B., Williams, P.). Novel mineral-oxidizing bacteria from Monserrat (W.I.): Physiological and phylogenetic characteristics (Yahya, A., Roberto, F. F., Johnson, D. B.). Isolation and characterization of a marine iron-oxidizing bacterium requiring NaCl for growth (Kamimura, K., Kunomura, K., Sugio, T.). Optimization of the ferrous iron liquid growth medium for Thiobacillus ferrooxidans (DSM583) by the design of experiments (D.O.E.) methodology(Magnin, J. P., Caire, J. P., Ozil, P.). Extension of logarithmic growth of Thiobacillus ferrooxidans using potential controlled electrochemical cultivation system (Matsumoto, N., Yoshinaga, H., Ohmura, N., Ando, A., Saiki, H.). Growth of Thiobacillus ferrooxidans on hydrogen by the dissimilatory reduction of ferric ions under anaerobic condition(Ohmura, N., Matsumoto, N., Sasaki, K., Nagaoka, T., Saiki, H.). Thiobacillus caldus and Leptospirillum ferrooxidans are widely distributed in continuous flow biooxidation tanks used to treat a variety of metal containing ores and concentrates (Rawlings, D. E., Coram, N. J., Gardner, M. N., Deane, S. M.). Polythionate metabolism in Thiomonas intermedia K12(Wentzien, S., Sand, W.). Microbial ecology assesment of a mixed copper oxide/sulfide dump leach operation (Bruhn, D. F., Thompson, D. N., Noah, K. S.). VOLUME B: Molecular Biology, Biosorption, Bioremediation. Chapter 3. Molecular Biology. The molecular genetics of mesophilic, acidophilic, chemolithotrophic iron- or sulfur-oxidizing microorganisms(Rawlings, D. E.). Cloning of metal-resistance conferring genes from an Acidocella strain (Ghosh, S., Mahapatra, N. R., Banerjee, P. C.). Characterization of the genes encoding a cytochrome oxidase from Thiobacillus ferrooxidans ATCC33020 strain (Appia-Ayme, C., Guiliani, N., Bonnefoy, V.). Genetic tranfer of IncP, IncQ, IncW plasmids to four Thiobacillus ferrooxidans strains by conjugation (Liu, Z., Borne, F., Ratouchniak, J., Bonnefoy, V.). Characterization and functional role of cytochromes possibly involved in the iron respiratory electron transport chain of Thiobacillus ferrooxidans (Giudici-Orticoni, M. T., Leroy, G., Toci, R., Nitschke, W., Bruschi, M.). The use of immunoelectron microscopy to analyze surface components of Thiobacillus ferrooxidans grown under different conditions (Coto, O., Gómez, Y., Varela, P., Falcon, V., Reyes, J., Jerez, C. A.). Molecular characterization of a chemotactic receptor from Leptospirillum ferrooxidans (Delgado, M., Toledo, H., Jerez, C. A.). Protein genes from Thiobacillus ferrooxidans that change their expression by growth under different energy sources (Guiliani, N., Jerez, C. A.). Strain diversity of Thiobacillus ferrooxidans and its significance in biohydrometallurgy (Kondratyeva, T. F., Pivovarova, T. A., Muntyan, L. N., Karavaiko, G. I.). Purification and characterization of 3-isopropylmalate dehydrogenase of acidophilic autotroph Thiobacillus thiooxiodans (Kawaguchi, H., Inagaki, K., Matsunami, H., Nakayama, Y., Tano, T., Tanaka, H.). Biochemical basis of chromate reduction by Pseudomonas mendocina(Rajwade, J. M., Salunkhe, P. B., Paknikar, K. M.). Study of the proteins involved in the resistance of cadmium of Thiobacillus ferrooxidans(Taira, M. C., Reche, C., Porro, S., Alonso-Romanowski, S.). Side-directed mutagenesis of rusticyanin (Sasaki, K., Ohmura, N., Saiki, H.). Classification of rusticyanin genes from five different strain of T. ferrooxidans into two groups (Ida, C., Sasaki, K., Ohmura, N., Ando, A., Saiki, H.). The use of insertion sequences to analyse gene function in Thiobacillus ferrooxidans: a case study involving cytochrome c-type biogenesis proteins in iron oxidation (Holmes, D., Jedlicki, E., Cabrejos, M. E., Bueno, S., Guacucano, M., Inostroza, C., Levican, G., Varela, P., García, E.). Comparative genomic characterization of iron oxidizing bacteria isolated from the Tinto River (González-Toril, E., Gómez, F., Irazabal, N., Amils, R., Marín, I.). Chapter 4. Biosorption. Biosorption for the next century (Volesky, B.). Biosorption of metals. The experience accumulated and the outlook for technology development (Tsezos, M.). Competitive biosorption of copper, cadmium, nickel and zinc from metal ion mixtures using anaerobically digested sludge(Artola, A., Balaguer, M. D., Rigola, M.). Activated sludge as biosorbent of heavy metals (Hammaini, A., Ballester, A., González, F., Blázquez, M. L., Muñoz, J. A.). Biochemical characteristics of heavy metal uptake by Escherichia coli NCP immobilized in kappa-carrageenan beads (Bang, S. S., Pazirandeh, M.). Potentiometric titration: a dynamic method to study the metal-binding mechanism of microbial biomass (Naja, G., Deneux-Mustin, S., Mustin, C., Rouiller, J., Munier-Lamy, C., Berthelin, J.). A bioelectrochemical process for copper ion removal using Thiobacillus ferrooxidans (Boyer, A., Magnin, J.-P., Ozil, P.). Sorption sites in dried leaves (Carvalho, R. P., Guedes, K. J., Krambrock, K.). Evaluation of potential use of immobilized Penicillium griseofulvum in bioremoval of copper (Shah, M. P., Vora, S. B., Dave, S. R.). Environmental protection from cadmium ions in liquid effluents by biosorption (Espinola, A., Adamian, R., Gomes, L. M. B.). Fungal biomass grown on media containing clay as a sorbent of radionuclides (Fomina, M. A., Kadoshnikov, V. M., Zlobenko, B. P.). Study of some biosorption supports for treating the waste water from uranium ore processing (Georgescu, P. D., Udrea, N., Aurelian, F., Lazar, I.). Platinum recovery on chitosan-based sorbents (Guibal, E., Larkin, A., Vincent, T., Tobin, J. M.). As(V) removal from dilute solutions using MICB (molybdate-impregnated chitosan beads) (Dambies, L., Roze, A., Roussy, J., Guibal, E.). On the melanine and humic acids interaction with clay minerals (Kadoshnikov, V., Golovko, N., Fomina, M., Zlobenko, B., Pisanskaya, J.). Biosorption of rare earth elements(Korenevsky, A. A., Sorokin, V. V., Karavaiko, G. I.). An overview of the studies about heavy metal adsorption process by microorganisms on the lab scale in Turkey (Sag, Y., Kutsal, T.). Interactions between marine bacteria and heavy metals (Ivanitsa, V. O., Vasilyeva, T. V., Bukhtiyarov, A. E., Lindström, E. B., McEldonwey, S.). Biosorption of long-lived radionuclides(Lyalikova-Medvedeva, N., Khijniak, T.). A novel mineral processing by flotation using Thiobacillus ferrooxidans (Nagaoka, T., Ohmura, N., Saiki, H.). Sorption of rare earth elements and uranium on biomass: A kinetic study of competition processes (Naja, G., Peiffert, C., Cathelineau, M., Mustin, C.). Biosorption of heavy metal ions from aqueous and cyanide solutions using fungal biomass (Natarajan, K. A., Subramanian, S., Modak, J. M.). Development of microbial biosorbents: a need for standarization of experimental protocols (Paknikar, K. M., Puranik, P. R., Pethkar, A. V.). The behaviour of five metal biosorbing and bioprecipitating bacterial strains, inoculated in a moving-bed sand filter (Pernfuss, B., Ebner, C., Púmpel, T., Diels, L., Macaskie, L., Tsezos, M., Keszthelyi, Z., Glombitza, F.). Removal of nickel from plating rinsing water with a moving-bed sand filter inoculated with metal sorbing and precipitating bacteria (Púmpel, T., Ebner, C., Pernfuss, B., Schinner, F., Diels, L., Keszthelyi, Z., Macaskie, L., Tsezos, M., Wouters, H.). Adhesion of microorganism cells and jarosite particles on the mineral surface (Sadowski, Z.). Multi-component biosorption of lead, copper and zinc ions on R. arrhizus (Sag Y., Kaya, A., Kutsal, T.). Heavy metal ions removal by biosorption on mycelial wastes(Stoica, L., Dima, G.). Cadmium removal by the dry biomass of Sargassum polycystum (Srikrajib, S., Tongta, A., Thiravetyan, P., Sivaborvorn, K.). Modelling of fixed bed biosorption columns in continuous metal ion removal processes. The case of single solute local equilibrium (Hatzikioseyian, A., Mavituna, F., Tsezos, M.). Mechanism of palladium biosorption by microbial biomass. The effects of metal ionic speciation and solution co-ions(Remoudaki, E., Tsezos, M., Hatzikioseyian, A., Karakoussis, V.). Biosorption of toxic metals by immobilised biomass and UF/MF membrane reactor (Veglio, F., Beolchini, F., Quaresima, R., Toro, L.). Biosorption of Cd and Cu by different types of Sargassum biomass (Volesky, B., Weber, J., Vieira, R.). Removal and concentration of uranium by seaweed biosorbent(Yang, J., Volesky, B.). Enhancement of gold-cyanide biosorption by L-cysteine (Niua, H., Volesky, B., Gomes, N. C. M.). Multimetal biosorption in a column using Sargassum biomass (Figueira, M. M., Volesky, B., Azarian, K., Ciminelli, V. S. T.). Biosorption of free and complexed cadmium ions by Aspergillus niger (Rosa, L. H., Pimentel, P. F., Figueira, M. M., Mendonca-Hagler, L. C. S., Gomes, N. C. M.). Specific metal sequestering acidophilic fungi (Durán, C., Marin, I., Amils, R.). Chapter 5. Bioremediation.Microbial leaching in environmental clean up programmes (Bosecker, K.). Influence of bacteria and sulphite ions on the transformation of pyritic tailings: shake flask tests (García, C., Ballester, A., González, F., Blázquez, M. L.). Development of a bioremediation process for mining wastewaters (Blumenroth, P., Bosecker, K., Michnea, A., Varna, A., Sasaran, N.). Biological treatment of acid mine drainage (Boonstra, J., van Lier, R., Janssen, G., Dijkman, H., Buisman, C. J. N.). Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi(Brandl, H., Bosshard, R., Wegmann, M.). Acid mine drainage (AMD) treatment by sulfate reducing bacteria (Estrada Rendón, C. M., Amara, G., Leonard, P., Tobin, J., Roussy, J., Degorce-Dumas, J. R.). Natural attenuation study of the impact of AMD in the site of Carnoules (Leonard, P., Estrada Rendon, C. M., Amara, G., Roussy, J., Tobin, J., Degorce-Dumas, J. R.). Bioremediation of cyanide leaching residues (Diaz X., Caizaguano, R.). Heavy metals removal by sandfilters inoculated with metal sorbing and recipitating bacteria (Diels, L., Spaans, P. H., Van Roy, S., Hooyberghs, L., Wouters, H., Walter, E., Winters, J., Macaskie, L., Finlay, J., Pernfuss, B., Pumpel, T.). Removal of iron from silica sand: integrated effluent treatment by sulphate reduction, photochemical reduction and reverse osmosis (Dudeney, A. W. L., Narayanan, A., Tarasova, I. I.). Bioremediation of a soil contaminated with radioactive elements(Groudev, S. N., Georgiev, P. S., Spasova, I. I., Komnitsas, K.). Effect of flooding of oxidized mine tailings on T. Ferrooxidans and T. Thiooxidans survival and acid mine drainage production: A 4 year restoration-environmental follow-up (Guay, R., Cantin, P., Karam, A., Vézina, S., Paquet, A.). Remediation of phosphogypsum stacks. Field pilot scale application (Komnitsas, K., Paspaliaris, I., Lazar, I., Petrisor, I. G.). Selection of remedial actions in tailings disposal sites based on risk assessment studies. Two case studies (Hallett, C., Cambridge, M., Komnitsas, K.). The application of sulphate-reducing bacteria in hydrometallurgy (Luptakova, A., Kusnierova, M.). Biotransformation of oxidised anions by selected bacteria (Kasatkina, T., Podgorsky, V., Mikhalovsky, S., Tashireva, A., Lindstrom, E. B., McEldonwey, S.). Experiments for the cyanide biodegradation from industrial wastewater from the processing of glod bearing ores (Varna, A., Michnea, A., Gavra, A.). Biodegradation of some organic reagents from mineral process effluents(Deo, N., Natarajan, K. A., Rao, K. H., Forssberg, K. S. E.). Kinetic studies on anaerobic reduction of sulphate (Moosa, S., Nemati, M., Harrison, S. T. L.). Removal and recovery of metal-cyanides from industrial effluents (Patil, Y. B., Paknikar, K. M.). Reduction of soil pH using Thiobacillus cultures (Polumuri, S. K., Paknikar, K. M.). Entrapment of particles from suspensions using Aspergillus species (Paknikar, K. M., Rajwade, J. M., Puranik, P. R.). Biological processes for thiocyanate and cyanide degradation (Rorke, G. V., Mühlbauer, R. M.). Pilot experiments to reduce environmental pollution caused by acid rock drainage (Cosma, N., Sasäran, N., Kovacs, Zs. M., Jelea, M., Popa, M., Nagy, A.-A., Gavra, A., Sand, W., Schippers, A., Jozsa, P.-G., Saheli, H., Gock, E.). Large-scale experiments for safe-guarding mine waste and preventing acid rock drainage(Jozsa, P-G., Schippers, A., Cosma, N., Sasaran, N., Kovacs, Zs. M., Jelea, M., Michnea, A. M., Sand, W.). Sulphate reduction optimization in the presence of Desulfotomaculum acetoxidans and Desulfobacter postgatei species. Application of factorial design and factorial correspondance analysis methods (Crine, M., Sbai, M .L., Bouayad, J., Skalli, A.). Study of the conditions of forming environmentaly sound insoluble arseniferrous products in the course of biohydrometallurgical processing of gold-arsenic concentrates (Sedelnikova, G .V., Aslanukov, R. Ya., Savari, E. E.). Transformation of arsenic and tellurium in solution by fungi(Solozhenkin, P. M., Nebera, V. P., Medvedeva-Lyalikova, N. N.). Bioprecipitation of copper from a leaching solution by a moderately thermophilic iron-oxidizing bacterium (Sugio, T., Matsumoto, K., Takai, M., Wakasa, S., Sogawa, T., Kamimura, K.). Recycling CIP process water to bacterial oxidation circuits via a thiocyanate degrading bioreactor(Watling, H. R., Quan, L., Williams, T., Stott, M. B., Clark, B. J., Miller, P. C., Houchin, M. R., Franzmann, P. D.). Bacterial degradation of thiocyanate in saline process water (Stott, M. B., Zappia, L. R., Franzmann, P. D., Miller, P. C., Watling, H. R., Houchin, M. R.). Degradation of thiocyanate by immobilized cells of mixed and pure cultures(Rosa, L. H., Souza-Fagundes, E. M., Santos, M. H., Dias, J. C. T., Pimentel, P. F., Gomes, N. C. M.).

Advertisement

advert image