Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors

By

  • George Voyiadjis, Louisiana State University, Department of Civil and Environmental Engineering, Baton Rouge, U.S.A.
  • Peter Kattan, Louisiana State University, College of Engineering, Baton Rouge, U.S.A.

The book presents the principles of Damage Mechanics along with the latest research findings. Both isotropic and anisotropic damage mechanisms are presented. Various damage models are presented coupled with elastic and elasto-plastic behavior. The book includes two chapters that are solely dedicated to experimental investigations conducted by the authors. In its last chapter, the book presents experimental data for damage in composite materials that appear in the literature for the first time.
View full description

Audience

Researchers in Engineering, Mechanics, Mechanical Engineering, Civil Engineering and Materials Science. Also suitable for Graduate Students in Engineering Mechanics, Mechanical Engineering, Civil Engineering and Materials Science.

 

Book information

  • Published: August 2006
  • Imprint: ELSEVIER
  • ISBN: 978-0-08-044688-2


Table of Contents

Chapter 1. Introduction
Part I: Isotropic Damage Mechanics - Scalar FormulationChapter 2. Uniaxial Tension in Metals
Chapter 3. Uniaxial Tension in Elastic Metal Matric Composites
Chapter 4. Uniaxial Tension in Elasto-Plastic Metal Matric Composites: Vector Formulation of the Overall Approach
Part II: Anisotropic Damage Mechanics - Tensor FormulationChapter 5. Damage and Elasticity in Metals
Chapter 6. Damage and Plasticity in Metals
Chapter 7. Metal Matrix Composites - Overall Approach
Chapter 8. Metal Matrix Composites - Local Approach
Chapter 9. Equivalence of the Overall and Local Approaches
Chapter 10. Metal Matrix Composites - Local and Interfacial Damage
Chapter 11. Symmetrization of the Effective Stress Tensor
Chapter 12. Experimental Damage Investigation
Chapter 13. High Cyclic Fatigue Damage for Uni-Directional Metal Matrix Composites
Chapter 14. Anisotropic Cyclic Damage-Plasticity Models for Metal Matrix Composites
Part III: Advanced Topics in Damage MechanicsChapter 15. Damage in Metal Matrix Composites Using the Generalized Model Cells
Chapter 16. The Kinematics of Damage for Finite-Strain Elasto-Plastic Solids
Chapter 17. A Coupled Anisotropic Damage Model for the Inelastic Response of Composite Materials
Part IV: Damage Mechanics and Fabric TensorsChapter 18. Damage Mechanics and Fabric Tensors
Chapter 19. Continuum Approach to Damage Mechanics of Composite Materials with Fabric Tensors
Chapter 20. Micromechanical Approach to Damage Mechanics of Composite Materials with Fabric Tensors
Chapter 21. Experimental Study and Fabric Tensor Quantification of Micro-Crack Distributions in Composite Materials