Genetic Analysis of Amniotic Fluid Shows Promise for Monitoring Fetal Development

According to a new study in The Journal of Molecular Diagnostics

Philadelphia, PA, August 8, 2011 – Researchers have demonstrated the feasibility of focused fetal gene expression analysis of target genes found in amniotic fluid using Standardized NanoArray PCR (SNAP) technology. This analysis could be used to monitor fetal development, enabling clinicians to determine very early in pregnancy whether fetal organ systems are developing normally. The study appears today in the September issue of The Journal of Molecular Diagnostics.

Using a previously developed SNAP gene panel as proof of concept, investigators from the Floating Hospital for Children at Tufts Medical Center, Mount Sinai School of Medicine, and Prevail Dx determined that 7 of the 21 genes assayed were expressed differently depending on fetal sex or gestational age. Results were obtained from amniotic fluid supernatant samples from fetuses between 15 to 20 weeks of gestation, when standard amniotic fluid testing is performed. 

“In the future, fetal gene expression panels could prove useful in prenatal care to evaluate function in cases of at-risk pregnancies and fetal pathologies,” commented lead investigator Lauren J. Massingham, MD, Division of Genetics, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, Massachusetts. According to the investigators, further studies using this gene panel approach could elucidate the complex immune pathways involved in the maternal-fetal relationship.

Dr. Massingham added, "Some genes in the current panel may prove to be useful components of a fetal gene expression panel. Future studies are warranted to identify additional genes to be incorporated, including inflammatory, developmental, and gastrointestinal genes. This technique could be optimized to examine specific genes instrumental in fetal organ system function, which could be a useful addition to prenatal care.”

SNAP technology allows for the simultaneous quantitative assessment of tens to hundreds of genes from reduced and degraded nucleic acid samples, overcoming the quality concerns of processing primary human samples. Gene expression that varies by up to five orders of magnitude can be quantified using a single assay.

The article is “Proof of Concept Study to Assess Fetal Gene Expression in Amniotic Fluid by NanoArray PCR” by Lauren J. Massingham, Kirby L. Johnson, Diana W. Bianchi, Shermin Pei, Inga Peter, Janet M. Cowan, Umadevi Tantravahi, and Tom B. Morrison (doi: 10.1016/j.jmoldx.2011.05.008). It will appear in The Journal of Molecular Diagnostics, Volume 13, Issue 5 (September 2011) published by Elsevier.
 

# # #


Notes for editors
Full text of the article is available to credentialed journalists upon request; contact David Sampson at +1 215 239 3171 orjmdmedia@elsevier.com. Journalists wishing to interview the authors may contact Lauren J. Massingham, MD, at +1 617 636 1468 or lmassingham@tuftsmedicalcenter.org.

About The Journal of Molecular Diagnostics
The Journal of Molecular Diagnostics, ( http://jmd.amjpathol.org), the official publication of the Association for Molecular Pathology, co-published by the American Society for Investigative Pathology, seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods for diagnosis or monitoring of disease or disease predisposition.

The Journal of Molecular Diagnostics, with an Impact Factor of 4.219, ranks among the Top 10 journals in Pathology, according to Thomson Reuters Journal Citation Reports® 2010.

About Elsevier

Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions — among them ScienceDirect, Scopus, Elsevier Research Intelligence, and ClinicalKey — and publishes nearly 2,200 journals, including The Lancet and Cell, and over 25,000 book titles, including a number of iconic reference works.

The company is part of Reed Elsevier Group PLC, a world leading provider of professional information solutions in the Science, Medical, Legal and Risk and Business sectors, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Media contacts
David Sampson
Executive Publisher, Elsevier
+1 215 239 3171
jmdmedia@elsevier.com

Dr. John Nelson
Scientific Editor
The Journal of Molecular Diagnostics
+1 301 634 7953
jwnelson@asip.org