A Gene for Depression Localized

Reports new study in Biological Psychiatry

Philadelphia, PA, January 4, 2012 – Psychiatric disorders can be described on many levels, the most traditional of which are subjective descriptions of the experience of being depressed and the use of rating scales that quantify depressive symptoms. Over the past two decades, research has developed other strategies for describing the biological underpinnings of depression, including volumetric brain measurements using magnetic resonance imaging (MRI) and the patterns of gene expression in white blood cells.

During this period, a great deal of research has attempted to characterize the genes that cause depression as reflected in rating scales of mood states, alterations in brain structure and function as measured by MRI, and gene expression patterns in post-mortem brain tissue from people who had depression.

So what would happen if one tried to find the gene or genes that explained the “whole picture” by combining all of the different types of information that one could collect? This is exactly what was attempted by Dr. David Glahn, of Yale University and Hartford Hospital's Institute of Living, and his colleagues.

“They have provided a very exciting strategy for uniting the various types of data that we collect in clinical research in studies attempting to identify risk genes,” said Dr. John Krystal, Editor of Biological Psychiatry.

Their work localized a gene, called RNF123, which may play a role in major depression.

They set out with two clear goals: to describe a new method for ranking measures of brain structure and function on their genetic ‘importance’ for an illness, and then to localize a candidate gene for major depression.

“We were trying to come up with a way that could generally be used to link biological measurements to (psychiatric) disease risk,” said Dr. John Blangero, director of the AT&T Genomics Computing Center at the Texas Biomedical Research Institute. “And in our first application of this, in relation to major depressive disorder, we've actually come up with something quite exciting.”

While RNF123 hasn't previously been linked to depression, it has been shown to affect a part of the brain called the hippocampus, which is altered in people with major depression.

“We assume that the biological measures are closer mechanistically to the underlying disease processesin the brain. Yet, ultimately we are interested in the subjective experiences and functional impairment associated with mental illness,” added Krystal. “The approach employed in this study may help to make use of all of this information, hopefully increasing our ability to identify genes that cause depression or might be targeted for its treatment.”

Glahn said, “We still have more work before we truly believe this is a home-run gene, but we've got a really good candidate. Even that has been tough to do in depression.”

The article is “High Dimensional Endophenotype Ranking in the Search for Major Depression Risk Genes” by David C. Glahn, Joanne E. Curran, Anderson M. Winkler, Melanie A. Carless, Jack W. Kent Jr., Jac C. Charlesworth, Matthew P. Johnson, Harald H.H. Göring, Shelley A. Cole, Thomas D. Dyer, Eric K. Moses, Rene L. Olvera, Peter Kochunov, Ravi Duggirala, Peter T. Fox, Laura Almasy, John and Blangero (doi: 10.1016/j.biopsych.2011.08.022). The article appears in Biological Psychiatry, Volume 71, Issue 1 (January 1, 2012), published by Elsevier.

# # #

Notes for editors
Full text of the article is available to credentialed journalists upon request, contact: Rhiannon Bugno at +1 214 648 0880 or Biol.Psych@utsouthwestern.edu. Journalists wishing to interview the authors may contact David Glahn, Ph.D., at + 1 860 545 7700, ext 7552 or david.glahn@yale.edu

The authors’ affiliations, and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, M.D., is Chairman of the Department of Psychiatry at the Yale University School of Medicine and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available here.

About Biological Psychiatry
Biological Psychiatry is the official journal of the Society of Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.

Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 4th out of 126 Psychiatry titles and 15th out of 237 Neurosciences titles in the Journal Citations Reports® published by Thomson Reuters. The 2010 Impact Factor score for Biological Psychiatry is 8.674.


About Elsevier

Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions — among them ScienceDirect, Scopus, Elsevier Research Intelligence, and ClinicalKey — and publishes nearly 2,200 journals, including The Lancet and Cell, and over 25,000 book titles, including a number of iconic reference works.

The company is part of Reed Elsevier Group PLC, a world leading provider of professional information solutions in the Science, Medical, Legal and Risk and Business sectors, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Media contact
Rhiannon Bugno
Editorial Office Biological Psychiatry
+1 214 648 0880
biol.psych@utsouthwestern.edu